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Abstract: In this article, we study the existence and asymptotic stability in pth moment of mild solutions to second order neutral 
stochastic partial differential equations with delay. Our method of investigating the stability of solutions is based on fixed point 
theorem and Lipchitz conditions being imposed. 
Keywords: Stochastic, neutral, impulse, asymptotic stability, mild solution  
 

1. INTRODUCTION 
Stochastic partial differential equations have 

received much attention in many areas of science including 
physics, biology, medicine and engineering. The existence, 
uniqueness and asymptotic behavior of solutions of the first 
order stochastic partial differential equations have been 
considered by several authors [3, 4, 11, 12, 15, 26]. Moreover 
many dynamical systems not only depend on present and past 
states but also involve derivatives with delays. Deterministic 
neutral functional differential equations, which was originally 
introduced by Hale and Lunel [9], are of great interest in 
theoretical and practical applications. Kolmanovskii and 
Myshkis [13] introduced neutral stochastic functional 
differential equations and gave its applications in chemical 
engineering and aero elasticity considering environmental 
disturbances into account. 

Caraballo et al. [5] have considered the exponential 
stability of neutral stochastic delay partial differential 
equations by the Lyapunov functional approach. In [7], Dauer 
and Mahmudov have analyzed the existence of mild solutions 
to semilinear neutral evolutions with nonlocal conditions by 
using the fractional power of operators and Kransnoselski-
Schaefer type fixed point theorem. In [10], Hu and Ren have 
established the existence results for impulsive neutral 
stochastic functional integrodifferential equations with infinite 
delays. It is well known that classical technique applied in the 
study of stability is based on a stochastic version of the 
Lyapunov direct method. However the Lyapunov direct 
method has some difficulty with the theory and application to 
specific problems when discussing the asymptotic behaviour 
of solutions in stochastic differential equations [16]. It seems 
that new methods are required to address those difficulties.  

Appleby [1] studied the almost sure stability of 
stochastic differential equations with fixed point approach. 
Luo [18, 17] have successfully applied fixed point principle to 
investigate the stability of mild solution of various stochastic 
equations.  Luo and Taniguchi [19], have studied the 
asymptotic stability of neutral stochastic partial differential 
equations with infinite delay by using the fixed point theorem. 
The impulsive effects exists widely in many evolution 
processes in which states are changed abruptly of certain 
moments of time, involving such fields as finance, economics, 
mechanics, electronics and telecommunications, etc [25]. The 
theory of impulsive differential equations have been studied 
extensively in [21, 22]. However in addition to impulsive 
effects, stochastic effects likewise exist in real systems. It is 
well known that a lot of dynamical systems have variable 
structures subjects to stochastic abrupt changes, which may 
result from abrupt phenomena such as stochastic failures and 

repairs of the components, changes in the interconnections of 
subsystems, sudden environment changes, etc.  

Even though there are many valuable results about 
neutral stochastic partial differential equations, they are 
mainly concerned with first-order case. In many cases it is 
advantageous to treat the second order stochastic differential 
equations rather than to convert them to first-order systems. 
The second-order stochastic differential equations are the 
right model in continuous time to account for integrated 
processes than can be made stationary. For instance, it is 
useful for engineers to model mechanical vibrations or charge 
on a capacitor or condenser subjected to white noise 
excitation through a second-order stochastic differential 
equations. The studies of the qualitative properties about 
abstract deterministic second order evolution equation 
governed by the generator of a strongly continuous cosine 
family was proposed in [8,27]. Mahmudov and McKibben 
[20] established results concerning the global existence and 
approximate controllability of mild solutions for a class of 
second order stochastic evolution equations. Moreover, Ren 
and Sun [23] established the existence, uniqueness and 
stability of the second-order neutral impulsive stochastic 
evolution equations with delay with some non-Lipschitz 
conditions. Balasubramaniam and Muthukumar [2] also 
discussed the approximate controllability of second-order 
neutral stochastic distributed implicit functional differential 
equations with infinite delay. Sakthivel et al. [24] have 
studied the asymptotic stability of second-order neutral 
stochastic differential equations by a fixed point theorem. Lei 
Zhang et al. [14] have studied the controllability of second-
order semilinear impulsive stochastic neutral functional 
evolution equations. Inspired by this consideration, the main 
objective of this paper is to study the asymptotic stability of 
the second-order neutral impulsive stochastic delay 
differential equations.  
2. PRELIMINARIES   
 In this section, we briefly give some basic 
definitions and results for stochastic equations in infinite 
dimensions and cosine families of operators. We refer to Prato 
and Zabczyk [6] and Fattorini [8] for more details. Let X  
and E  be two real separable Hilbert spaces and ),( XEL  
be the space of bounded linear operators from E  into X , 
equipped with the usual operator norm  . Let ),,( P
be a complete probability space furnished with a normal 
filtration 0}{  tt generated by the Q –Wiener process  w  
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on ),,( P  with the linear bounded covariance operator 
Q  such that trQ . We assume that there exist a 

complete orthonormal system 1}{ iie in E, a bounded 

sequence of nonnegative real numbers }{ i such that

iii eQe  , ,...,3,2,1i  and a sequence }{ i of 
independent Brownian motions such that 

Eeteeetw ii
i

i 




),(),( ,
1


   

and 
w

tt  ,where 
w

t is the sigma algebra generated by

 0}.t{w(s);  Let );( 2/1
2

0
2 XEQLL  denote the 

space of all Hilbert –Schmidt operators from EQ 2/1
 to X

with the inner product ][, 0
2

  Qtr
L

. Let 

),,( XL t
p  is the Hilbert space of all

 t -measurable 
square integrable random variables with values in a Hilbert 
space X . 
In this paper, we consider the following second-order neutral 
impulsive stochastic differential equations with delays of the 
form 

dtttxtftAxttxtftxd )))]((,()([)))]((,()([ 10  

  ,0),()))((,(2  ttdttxtf                              (1)                                                                      

,)0(;)( 10 0
xxDx b                    (2)          

))((~)())(()( kkkkkk txItxtxItx  , 

                   where  ,,...,2,1 mk                   (3) 

where bD
0


 and 1x is also an 0 -measurable X -

valued random variables independent of w .  
 

XXADA )(: is the infinitesimal generator of a 

strongly continuous cosine family on X ; 

;)1,0(:  iXXRf i
0
22 : LXRf 

are appropriate mappings
 

and XXII kk :~, are 

appropriate functions. Moreover, let
   
,...0 110  mm tttt

,)()()(   kkk txtxtx

,)()()(   kkk txtxtx )( 
ktx  and )( 

ktx  

denote the right and left limits of x at kt . Similarly )(  ktx  

and )(  ktx denote the right and left limits of x at .kt

Moreover ,kI kI~ represents the size of the jump. Let

],0[:,,  R )0(  are continuous. The 
space D is assumed to be equipped with the norm  

XtD
t )(sup 0    . Here )],0,([

0
XDb   

denote the family of all almost surely bounded, 0 -

measurable, continuous random variables from ]0,[   to

X . Let us introduce the spaces                   
        

mk

XttCxXJxXTH kktt kk

,...,3,2,1

),],,((,:{)];,0([ 1,( ]1



 


  and there exist )( 
ktx for },...,3,2,1 mk    and       

mkXttC

xXTHxXTH

kk

tt kk

,...,3,2,1),],,((

),];,0([{);],0([

1

,( ]1









 

 and there exist )(  ktx for },...,3,2,1 mk  . 

 It is obvious that )];,0([ XTH  and );],0([ XTH 
are Banach spaces endowed with the norm

 p

XTtH
txEx )(sup ],0[ .It is easy to see that H   

provided with the norm 
HHH

xxx   
. 

In this section, we mention some basic concepts, notations, 
and properties about cosine families of operators [8, 27].  
Let );( XEL  is the space of bounded linear operators from 
E into X. The one parameter family                 

)(});({ XLRttC   satisfying  

 (i) IC )0( , 

(ii) xtC )(  is continuous in t  on R  for all Xx , 

(iii) )()(2)()( sCtCstCstC    

        for all Rst , is called a strongly continuous cosine 
family. 
 The corresponding strongly continuous sine family 

)(});({ XLRttS   is define 

.,,)()(
0

XxRtxdssCxtS
t

   

The generator XXA : of });({ RttC  is given by  

0

22 )()/(



t

xtCdtdAx for all

)};()(:{)( 2 XRCxCXxADx   
It is well known that the infinitesimal generator A is 

a closed, densely defined operator on X . Such cosine and 
sine families and their generators satisfy the following 
properties. 
 
Lemma 2.1: [8] 

Suppose that A is the infinitesimal generator of a 
cosine family of operators }.);({ RttC  Then the 
following terms hold. 
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  (i)  There exists 1M  and 0 such that    

       
teMtC )( and hence 

teMtS )( . 

 (ii)  
r

s

xsCrCxduuSA
ˆ

)]()ˆ([)(
 

for all   

           rs ˆ0 . 
(iii) There exists 1N  such that 

dseNrSsS
r

s

s
ˆ

)ˆ()( 

 

for all  rs ˆ0 . 

Lemma 2.2: [6]. For any 1r and for arbitrary  
0

2L - valued predictable process )( such that 
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0

1
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X
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
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Definition 2.3: A stochastic process }],0[),({ Tttx 

 T0 is called a mild solution of equations (1), (2) 
and (3) if  
(i)   )(tx is adapted to .0,  tt  

(ii)  Xtx )( had gladca `` paths on ],0[ Tt a.s and  

       for each ],0[ Tt , )(tx satisfies the   integral equation 
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            dsssxsfstC
t
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t
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0
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            )()))((,()( 2
0

sdwssxsfstS
t
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            ))(()(
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k
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             ))((~)(
0

k
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kk txIttS
k




                         (4) 

                                                          
Definition 2.4: Let 2p be an integer. Equation (3) is 
said to be asymptotically stable in pth moment if it is stable in 

pth moment and for any ,, 10
XxDb   we have 

                                  0})({suplim 


p

XT
txE

 

 

3. ASYMPTOTIC STABILITY OF  
      SECOND-ORDER NEUTRAL   
      STOCHASTIC DIFFERENTIAL  
      EQUATIONS 

Now let us present the main result of this paper. We 
consider the asymptotic stability in the pth moment of mild 
solutions

 
(1), (2), (3) by using the fixed point principle. 

Moreover, for the purpose of asymptotic stability, we shall 
assume that in this work

 
)1,0(0)0,(fi  it and

0)0,(f2 t , ,0)0( kI 0)0(~ kI , mk ,...,2,1 . 
Then equations (1), (2) and (3) have a trivial solution when 

0 and 01 x . 
To prove the following result, we impose the following 
conditions.  
 (I) The cosine family of operators }0);({ ttC  on X and       

      the corresponding sine family   }0);({ ttS  satisfy the  

      conditions bt
X

MetC )( ,        

      at
X

MetS )( , 0t  for some        constants     

      1M  and  Rba,0 .  

(II) The functions )2,1,0(fi i satisfy the Lipchitz  
      condition and there exist positive constants       

     321 ,, KKK  for every 0t and Xyx ,  , such  
      that                                     

1,0;),(),(  iyxKytfxtf
XiXii . 

                                

2;),(),( 322  iyxKytfxtf
XX

 

(III) The function kk II ~,  and there are positive            
        constants qk , gk such that  

                
p

k
p

kk yxqyIxI  )()( , 

                

p
k

p

kk yxgyIxI  )(~)(~
, 

        for each ).,...,3,2,1(, mkXyx   

(IV) ,0)0( kI 0)0(~ kI , mk ,...,3,2,1 . 

Theorem 3.1: 

  Assume the conditions (I)-(IV) hold. Let 2p be 

an integer and
2

2
)1(

p

p
ppc 






 

 . If the inequality 

1)]ˆˆ)2(k+ak+b(kM5[ 2p
3

p-p
2

p-p
1

p1-p 


DLa
p

is satisfied, then the second-order neutral stochastic 
differential equations with delays (1), (2) and (3) is 
asymptotically stable in pth moment.

   
Proof: Define an operator HH  :  by 

 



International Journal of Computer Applications Technology and Research 
Volume 2– Issue 4, 415 - 421, 2013 

418 

  
 

dsssxsfstC

xfxtStCtx
t

 



0
0

01

)))((,()(

)))0(,0(,0()()0()())((





 
 

dsssxsfstS
t

)))((,()( 1
0

 
 

     

)()))((,()( 2
0

sdwssxsfstS
t

   

               

))((~)())(()(
00

k
tt

kkk
tt

kk txIttStxIttC
kk






  

   = )(
7

1

tF
i

i


 ; 0t .                                                       (5) 

In order to prove the asymptotic stability, it is enough to prove 
that the operator   has a fixed point H .To prove this 
result, we use the contraction mapping principle. To apply the 
contraction mapping principle, first we verify the mean square 
continuity of   on ),0[   . 

     Let Hx  , 01 t  and  
r is sufficiently small then  
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We can see that
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Moreover by using Holder’s inequality and lemma 2.2, we 
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Thus,  is continuous in pth moment on ),0[  . 

Next , we show that HH  )( . From (5), we obtain 
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Now, we estimate the terms on the right hand side of (7) using 
( I ), ( II ), ( III ) and (IV) we obtain 
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For any Htx )(   and any 0 , there exist a 01 t , 
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As 0 pate as t  and by assumption on Theorem 

3.1, there exists a ,12 tt  such that for any ,2tt  we have  
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 From (18) and (19), for any ,2tt  we obtain 
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Thus from (8)-(12) and (16), (17), (21), we can obtain 
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Therefore,  is a contraction mapping and hence there exist 
an unique fixed point )(x  in H  which is the solution of the 

equations (1)-(3) with 10 )0(,)( xxx   and 

0)( p

X
txE as .t This completes the proof. 

Corollary 3.2: 
    If the conditions (I) to (IV) hold, then the second- order 
neutral impulsive stochastic differential system (1) to (3) is 
mean square asymptotically stable if   
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