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Abstract: This project explores using Wi-Fi signals to detect human presence and estimate their poses in an indoor 

environment, without cameras or wearables. The research aims to characterize the impact of human pose on Wi-Fi signals 

and develop deep-learning models to map 1D signals to 2D pose. A dataset of Wi-Fi channel state information (CSI) from 4 

volunteers is used to train a deep-learning model, achieving 60.39 % accuracy on CSI data. The system allows contactless, 

privacy-preserving human sensing for applications like rescue operations, military applications, and elderly monitoring, 

leveraging Wi-Fi infrastructure beyond communication. Field tests validate the system's performance in an indoor 

environment, demonstrating the potential of Wi-Fi-based vision-free human sensing. 
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1. INTRODUCTION 

The evolution of human detection and pose estimation 

has significantly benefited from recent advances in 

wireless communication and deep learning. The novel 

use of Wi-Fi signals, captured by ESP32 modules 

equipped with high-performance antennas, offers an 

innovative departure from traditional computer vision 

techniques. This method is particularly advantageous in 

challenging environments with poor visibility, as it relies 

on Wi-Fi's Channel State Information (CSI), which is 

sensitive to human presence and motion. 

Deep learning technologies like DensePose and GANs 

have further revolutionized Wi-Fi-based sensing systems. 

DensePose translates CSI data into detailed 3D human 

poses, while GANs enhance data diversity for training, 

enabling the system to better generalize across various 

scenarios. This integration has positioned Wi-Fi-based 

human detection as a powerful tool for various 

applications, overcoming the shortcomings of vision-

based systems. 

This research leverages deep learning models to harness 

the ESP32 Wi-Fi module and advanced antennas for 

human detection and pose estimation. The goal is to 

create a versatile system that thrives in multiple 

environments, offering non-intrusive, high-accuracy 

monitoring. These developments mark a significant step 

forward in Wi-Fi-based sensing and have the potential to 

transform applications in smart homes, healthcare, and 

security. 

 

1.1 Classification of Human Detection 

Techniques 

Human detection techniques have broadly branched into 

vision-based and sensor-based methodologies. Vision-

based methods, particularly those employing 

convolutional neural networks (CNNs), have 

substantially refined the analysis of images for human 

detection and pose estimation. CNNs discern human 

figures in images, whereas pose estimation delineates 

body orientation by digitizing key anatomical landmarks 

into skeletal models. A notable method presented in 

recent literature employs Part Affinity Fields (PAFs) to 

associate body parts with individuals during pose 

estimation, ensuring real-time efficiency coupled with 

precision. 

In contrast, sensor-based detection leverages non-visual 

data from sources like Wi-Fi signals, which interact with 

human presence, to ascertain location and movements 

without needing visual input. These methods benefit 

from various sensors, including those found in wearable 

devices and smartphones like accelerometers, 

gyroscopes, and GPS, providing a rich tapestry of tools 

for detecting humans. Notably, a study has demonstrated 

a gait analysis system that utilizes data bands attached to 

a person’s lower limbs, capturing gait metrics for 

individual identification with impressive accuracy.This 

sensor-based is further classified into (i)wearable sensors 
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and (ii) smartphone-based.

 

Figure 1: Classification of human detection techniques. 

2. LITERATURE SURVEY   

In [1], the author presents develops an innovative 

approach for dense human pose estimation using Wi-Fi 

signals. By mapping the amplitude and phase of Wi-Fi 

signals to UV coordinates within human body regions 

using deep learning architectures, they achieve 

performance comparable to image-based methods. In [2] 

introduces a sensor-based human identification system 

using gait analysis with an impressive accuracy of over 

97%. In [3] proposes a hybrid deep learning model using 

CNNs and LSTMs for activity identification, showing a 

98% accuracy on the MHEALTH dataset. [4] presents 

"Person-in-WiFi," which uses WiFi signals for body 

segmentation and pose estimation. [5] introduces CSI-

Net, which utilizes WiFi CSI for tasks like biometrics 

and action recognition. 

[6] presents a WiFi signal-based activity recognition 

using deep learning with LSTM networks. [7] discusses 

the temporal consistency of WiFi-based recognition 

systems, maintaining 94.5% accuracy over time. [8] 

describes a real-time human activity detection in smart 

homes using ESP32 microcontrollers with 70% 

accuracy.In [9], the author presents an efficient real-time 

method using Part Affinity Fields for human pose 

estimation.  [10] demonstrates WiFi CSI-based activity 

recognition using deep CNNs with accuracies up to 

100%. [11] discusses human pose estimation from WiFi 

signals, comparing performance with image-based 

methods. 

[12] outlines the Point R-CNN network for 3D pose 

estimation using point clouds. [13] introduces a real-time 

tracking system using YOLO-v2 on drones with 96.5% 

accuracy. [14] provides an extensive overview of human 

behavior recognition using WiFi CSI. [15] introduces the 

eHealth CSI dataset for human activities with up to 

99.9% accuracy in detection. [16] discusses a differential 

CSI-based HAR method achieving 95.13% accuracy. 

[17] introduces Widar2.0 for passive human tracking 

using a single WiFi link. [18] describes WiFi-ID, a 

system identifying individuals through WiFi CSI with up 

to 93% accuracy. [19] examines a WLAN-based outdoor 

human detection system with a 99.86% accuracy rate. 

[20] showcases a real-time human detection system using 

YOLO deep learning for aiding visually impaired 

individuals. [21] introduces an IoT and Blockchain-based 

security system for human detection using fingerprint 

data with 98% accuracy. 

[22] compares deep learning models on embedded 

platforms for human detection with the SSD MobileNet 

V2 model achieving a 0.94 PR. [23] discusses a deep 

learning-based system for detecting humans in outdoor 

NLOS scenarios using WLAN technology. [24] outlines 

an SDR platform for human activity recognition using 

USRP devices. [25] introduces WFID, a human 

identification system using WiFi CSI with over 91% 

accuracy. [26] proposes hybrid deep learning models for 

HAR using smartphone sensors, achieving up to 98.2% 

accuracy. 

2.1 Comparison Table 

The comparative analysis of human activity recognition 

(HAR) methods, as outlined in Table-1a and Table-1b, 

spans vision-based, sensor-based, and WiFi-based 

approaches. Techniques such as DensePose and Sensor-

based Gait Analysis deliver high precision but require 

different levels of data input and participant engagement. 

Hybrid models and WiFi-centric strategies like Person-

in-WiFi demonstrate the versatility of deep learning 

combined with non-intrusive sensing for HAR, providing 

both privacy and adaptability. Meanwhile, CSI-Net and 

WiFi-HAR with Deep Learning capitalize on WiFi's 

capability for nuanced biometrics and gesture 

recognition. Other methods prioritize the temporal aspect 

and real-time application, like the WiFi-CSI-based HAR 

for Smart Homes, emphasizing cost-efficiency and 

functionality suitable for diverse HAR applications. 

Table. 1a: Comparison table of survey papers from [1] to  [10]. 

 

Table. 1b: Comparision table of survey papers from [11] to [21]. 
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Within the broader spectrum of HAR, each paper 

contributes novel techniques and insights. DensePose 

From WiFi and Point R-CNN exemplify innovative 

vision and 3D data approaches to activity recognition and 

pose estimation. The use of WiFi CSI data for human 

identification is further illustrated in works focusing on 

differential CSI and WiFi Frequency Identification 

(WFID), which boast high accuracy and computational 

effectiveness. 

Table. 1c : Comparision table of survey papers from [22] to [26]. 

 

 

 

 

 

 

 

 

3. METHODOLOGY 

3.1Block Diagram  

 

Figure 2: Block diagram of Human detection and pose 

estimation using Wi-Fi signals 

This system, comprises a transmitter with three ESP32 

modules and dual-band antennas broadcasts Wi-Fi 

signals, while the receiver, similarly equipped, captures 

the signals' Channel State Information (CSI), as 

illustrated in Fig.2. The CSI data, reflecting human 

movement through changes in signal amplitude and 

phase, is then analyzed using a specialized tool to 

visualize signal perturbations. A deep learning model, 

combining a Gated Recurrent Unit (GRU) for temporal 

patterns and a Dense Pose Model for spatial analysis, is 

trained on a dataset of various human poses paired with 

their CSI signatures. This robust model, capable of 

detecting human presence and estimating poses even 

through walls, demonstrates significant potential in 

applications ranging from smart home systems to 

healthcare monitoring, without relying on traditional 
visual cues. 

3.2 Flow Chart  

The Wi-Fi signal-based human detection and pose 

estimation system harnesses Channel State Information 

(CSI) data from ESP32 modules to identify and analyze 

human presence within an indoor setting, as shown in 

Fig.3. The process initiates with three ESP32 transmitters 

that emit Wi-Fi signals, while counterpart receivers 

capture the CSI data at a 100Hz frequency, ensuring 

detailed acquisition of signal interactions with the 

environment. This data is then processed to extract 

amplitude and phase variations, indicative of human 

movement and presence, by employing the Wi-Fi 

Channel State Information Tool. 
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Figure. 3 : Flowchart of Human detection and pose estimation 

using Wi-Fi signals 

Following data acquisition and processing, the core 

analysis is conducted through a sophisticated deep 

learning model composed of a Dense Pose Model for 

spatial feature extraction and a GRU Model for temporal 

data analysis. Trained on a dataset with varied human 

poses, the model learns to discern patterns correlating 

CSI data with specific poses. Post-training, field tests 

validate the model's efficacy in real-time human 

detection and pose estimation, showcasing its ability to 

determine various poses, even through obstructions.  

3.3 Hardware Implementation 

The system architecture incorporates ESP32 Wi-Fi 

modules, dual-core 32-bit microcontrollers with 

integrated Wi-Fi transceivers, functioning as both 

transmitters and receivers, ensuring a seamless exchange 

of wireless data. These modules, capable of operating on 

dual Wi-Fi bands, are connected to high-gain 6dBi 

antennas via U.FL-IPEX cables, enhancing the 

communication range and signal strength. The ESP32's 

substantial processing capabilities and a low-power co-

processor facilitate efficient data modulation and power 

management, ensuring robust performance across diverse 

environmental conditions.  

3.4 Software Implementation 

A . Data Collection:The data collection was conducted 

using the open-source ESP-IDF, harnessing the 

capabilities of the ESP32 microcontroller. The 

methodology for acquiring CSI data was based on the 

protocol outlined in the ESP32-CSI-Tool, a GitHub 

repository curated by Steven Hernandez. This repository 

provides a comprehensive toolkit for transmitting and 

extracting CSI data from the ESP32, which we employed 

to capture the wireless signals' amplitude and phase 

changes induced by human activity. 

B.Signal Processing: Upon collection, the CSI data was 

processed to extract the Amplitude and Phase 

components. The amplitude and Phase are calculated by 

using the 1 and 2.These metrics were derived using 

signal processing techniques to discern the characteristics 

of the human poses within the environment. The 

amplitude provides information about the signal strength, 

while the phase indicates the signal's displacement, both 

of which are perturbed by human movement. 

Amplitude = √
(𝑅𝑒𝑎𝑙 )2

(𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 )2
                (1) 

Phase = arctan (
𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦

𝑅𝑒𝑎𝑙
)                 (2) 

C. Pose Estimation with GRU Networks: For the task of 

pose estimation, we employed Gated Recurrent Unit 

(GRU) models due to their efficiency in capturing 

temporal dependencies in sequence data. The GRU 

model was trained using CSI-derived features, bypassing 

the need for direct visual data and maintaining privacy 

D. Visual Representation through DensePose:To 

correlate the abstract CSI signals with human-

understandable representations, we utilized DensePose, a 

method that maps all human pixels of an RGB image to 

the 3D surface of the human body. The DensePose was 

implemented on recorded video footage to create a visual 

dataset that associates specific human poses with their 

respective CSI signatures.  

E. Integration and Output:The integration of these 

components culminated in a system capable of predicting 

human poses in real time based on CSI data. Once a pose 

was estimated using the GRU model, a corresponding 

visual representation was retrieved. If the predicted pose 

matched a pre-defined category (e.g., "Sitting"), a image 

from the corresponding category in the frames directory 

was displayed. Conversely, for poses that lacked visual 

data or were undefined, a placeholder image (a black 

frame) was generated. 

4. RESULTS AND DISCUSSION 

This section of the research paper presents the evaluation 

of a novel approach for pose estimation using GRU 

networks on time-series data obtained from Channel 

State Information (CSI). The model's predictive 

capabilities were assessed in real-time conditions and 

through retrospective analysis of recorded data. 

4.1 Model Performance Evaluation 

The GRU model was trained on a dataset that 

encompassed CSI amplitude and phase information 

collected via three ESP32 sensors. It achieved a training 

accuracy of 60.39%, a figure that reflects the model's 

ability to generalize from the data it was trained on. The 

accompanying accuracy and loss plots elucidate the 

model's performance throughout the training epochs. As 

shown in the Fig.4. 

Figure. 4: Training and validation accuracy 
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The model demonstrated a gradual improvement in 

accuracy distinguishing between different poses as 

training progressed. The Fig.5 similarly indicated a 

consistent decrease in error rate, corroborating the 

model's increasing proficiency. 

 

Figure. 5 : Training and validation loss 

The classification report presented in the Table 2 

provides a detailed breakdown of the model's predictive 

performance across different classes. The precision and 

recall metrics for each category underscore the model's 

strengths and limitations in distinguishing between 

'Sitting' i.e pose label-0, and 'No Pose' i.e pose label-1. 

The f1-scores presented serve as a harmonic mean of 

precision and recall, offering a singular measure of 

accuracy that takes into account both the purity and 

completeness of the predictions. 

Table 2: Values Of Pose Label, Precision, Recall, F1-Score. 

4.2 Visualization Of Amplitude Data 

A critical part of the analysis involved visualizing the 

amplitude readings from the first 100 data points 

(representing one second of time) from each of the three 

ESP32 sensors in Fig.6. This visualization provided 

insight into the variance and patterns within the 

amplitude signals over a short duration, critical for 

understanding the temporal characteristics that the GRU 

model was expected to capture. 

 

Figure. 6 : Amplitude comparison from three -ESP32 receivers 

for 1-sec 

4.3 Real-Time Data Predictions 

When deploying the trained GRU model in a real-time 

environment, it successfully predicted 'Sitting' and 'No 

Pose' categories with significant accuracy. The model's 

predictions were subsequently mapped to visual data that 

were aligned with the training sets. The seamless 

transition from numerical data to an interpretable visual 

output demonstrated the model's potential in applications 

where real-time monitoring and instant visual feedback 

are indispensable. 

 

Figure. 7 : Result of detecting and estimating a sitting pose of a 

human 

 

Figure  8: Result when there is no person or movement behind 

the wall. 

5. CONCLUSION 

In Conclusion, this study showcases an economical 

solution leveraging Wi-Fi signals for human detection 

and pose estimation, utilizing ESP32 modules paired 

with dual-band Wi-Fi SMA antenna operating at 

frequencies of 2.4 GHz and 5 GHz, with a gain of 6dBi, 

to capture the intricate Channel State Information (CSI) 

at 100Hz. This approach, transcending physical 

obstructions, employs deep learning with DensePose and 

GRU networks to accurately infer human presence and 

activities. The synergy of these technologies presents a 

promising avenue for Human Activity Recognition 

(HAR), setting the stage for impactful advancements in 

both research and practical applications. 
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