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Abstract: In this paper we report a more secure and efficient encryption algorithm based on the NTRU cryptographic scheme. NTRU 

is lattice based scheme resistant to quantum computing, hence it falls under the class of post quantum cryptosystems. It is based on 
shortest vector problem (svp)[9].The main characteristics of the system are low memory and low computational requirements but it 
provides high level of security. We present modifications in the NTRU scheme for making it more secure and efficient particularly for 
applications in wireless and constrained devices. In the original scheme, repetitions in the plaintext message lead to repetitions in the 
cipher text, which is a source of weakness in the system. To overcome this problem each byte of the input has been digested with 
different operations that produce different encrypted text even for repeated content of the Plain text message. The second modification 
is enhancing the public key scheme that makes this system more robust. These two modifications in the NTRU scheme makes it secure 

even for use in the Quantum Computing environment. 
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1. INTRODUCTION 
Post quantum cryptography is a fascinating area of research 
challenge. In existence of Quantum computer post quantum 
cryptography will be critical for the future interest as it is well 
known that quantum computer may destroy RSA, DSA, and 
ECDSA. Quantum computers can potentially break most of 
conventional cryptosystems based on the integer factorization 
problem and discrete log problem which are actually deployed 

in practice at present. Certain classical cryptosystems inspired 
by computational problems of nature that entirely different 
from the integer factorization and discrete log are potentially 
much harder to solve, will remain unaffected by the threat of 
Quantum Computing. So those are called QUANTUM-
RESISTANT or more clearly „POSTQUANTUM‟ 
cryptosystems [1].We has some question to answer like- 

 Is there any need to worry about the threat of quantum 
computers? 

 Why should focus not continue on RSA or other resistant 
cryptosystem for classical computers?  

Now suppose a situation when someone announces that 
quantum computer is no more a mystery means it is 
constructed then computers using crypto systems will be 
unsecure. In such case we need to have some crypto systems 
resistant to quantum attacks. The reasons to work on Post 
Quantum Cryptography are [2]- 

 Time is required to improve the efficiency of post-
quantum cryptography. 

 Time is required to build confidence in post-quantum 
cryptography. 

 Time is required to time to improve the usability of post-
quantum cryptography [1] 

These reasons are suggesting that cryptographic community 
should work on the crypto systems that can provide the 
security in quantum computer environment. Following are 

some recommended areas of crypto systems resistant on 
quantum computing- 

1) Hash-based cryptography- Most of the application 
requires the unbroken digital signature in quantum 
environment. Some hashed based schemes are found to be 
practical to post quantum cryptography. There are many 
example but classic one is Merkle’s tree hash-public-key 

signature system (1979), building upon a one-message-
signature idea of Lamport and Diffie. [3] 

2) Code-based cryptography-This category include classic 
example of McEliece’s hidden-Goppa-code public-key 

encryption system proposed by McEliece in 1978. Reason to 
be resistant in quantum computer is that it is based on Goppa 
code which has been unbroken till recent research done. No 
attack of significant affects has been detected on the code 
based cryptography that‟s why it is most suitable candidate 
for post quantum cryptography[3]. 

3) Lattice-based cryptography- Lattice based cryptography 
has promises to the post quantum cryptography because they 
enjoy the very strong proof based on implementation as well 
provide very high level of security with simplicity. We will be 
discussing the one of such encryption scheme in this paper 
and improved version. [3] 

4) Multivariate – quadratic - equations cryptography- In 
recent years these crypto systems have been considered 

resistant to attacks and based on the quadratic equation over 
finite field. All of them use facts that MQ problem is N-P 
complete. One of many interesting examples is Patarin‟s 
“HFEv−” public-key-signature system (1996), generalizing a 
proposal by Matsumoto and Imai.2 Daniel J. Bernstein. [3] 

5) Secret-key cryptography- In this category of 
cryptography the leading example is the Daemen–Rijmen 
“Rijndael” cipher (1998), which was renamed “AES,” the 
Advanced Encryption Standard. [3] 
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In our document we are working on the lattice based 
cryptography. We are proposing NTRU encryption more 
secure, resistant and efficient.   

2. DESCRIPTION OF MODEL 
The NTRU, a lattice based cryptosystem, the encryption 
basically depends on the mixing of polynomial having small 
coefficients with reduction modulo p and q, where p and q are 
some constants. The encryption and decryption of NTRU is O 
(N2) when the block of massage is O(N), as compared to RSA 
having O(N3) .The  key generation is very easy and fast of 
O(N) as compared to RSA having O(N2). System validity 
depends on the probability theory because it uses the random 
polynomial that is why each element has many possible 
encryptions [8]. 

Some defined notations, parameter [7] and definitions that are 
followed in entire system are- 

Definition of a lattice:  Let v1, v2…. vk    be a set of vectors 
in Rm. The set of   all   linear   combinations a1v1 + 

a2v2…+...+  akvk ,  such  that  each ai  ∈  Z,  is   a lattice. We 
call it more formally as   the lattice generated    by   v1, v2, . . 
. ,vk.  

Bases and the dimension of a lattice• Let  L  = { a1v1 +  
a2v2 + . . . +  anvn| ai ∈  Z, I  =  1 , . . . n } and v1, v2 . . . ,vn 
are n independent vectors, then we  call  that  v1, v2,. . .  ,vn is  
a basis  for  Lattice and  that  L has dimension n which is 
equal to cardinality of a vector[4].  

N: (Degree constant). A positive integer which defines the 
dimension of the vector. 

q: (Large Modulus).A positive integer. The associated NTRU 
lattice is a convolution modular lattice of modulus q. 

p: (Small Modulus). An integer or a polynomial. 

Df, Dg :( Private Key Spaces). Sets of small polynomials 
from which the private keys are taken. 

Dm (Plain text Space): Set of polynomials that represent 
encrypts able messages. 

Dr (Blinding Value Space).Set of polynomials from which the 
temporary blinding value used during encryption is selected. 

Center (centering method). It is way of performing mod q 
reduction on cipher text. 

Convolution product: The Ring of Convolution    
Polynomials is R =Z[X] / (XN −1).  Multiplication of 
Polynomials (*    between polynomials) in this ring 
corresponds to the convolution product of their associated 
vectors, defined by 

                          N-1 

     (f * g)(X)  = ∑     (     ∑ fi.gj        )X
k
. 

                         k=0          i+j=k (mod N) 
 

Operation between two polynomials refers to the convolution 
product while for the constant and the polynomial it is simple 
multiplication. There is one more notation Rq = (Z/qZ)[X] 
/(XN−1) convolution operation in Rq can also be called as 
modular convolutions[3]. 

Definition1.A binary polynomial is one whose coefficients 
are all in the set {0,1}. A trinary polynomial is one whose 
coefficients are all in the set {0,±1}.  
 
Definition2. Following are definition of the polynomial 

spaces BN(d),TN(d),TN(d1,d2)- 
Polynomials in space BN(d) have d number of coefficients 
equal to 1 and the other coefficients are 0. Polynomials in 
space TN(d) have d +1 number of coefficients equal to 1, have 
d number of coefficients equal to −1, and the other 
coefficients are 0. Polynomials in space TN(d1,d2) have d1 
number of coefficients equal to 1, have d2 number of 
coefficients equal to −1, and the other coefficients are 0. 

 
NTRU Encryption Algorithm: 

NTRU Encrypt consists of three basic functions-  

 Key Generation  

 Encryption of plain text  

 Decryption of cipher text  

NTRU Encrypt key generation consists of the following 
operations: 

1)  Randomly generate polynomials f and g in df, dg 
respectively. 

2)  Invert f in Rq to obtain fq, invert f in Rp to obtain fp, and 
check that g is invertible in Rq [5]. 

3) The public key h = p *g * fq (mod q). The private key is 
the pair (f, fp). 

NTRUEncrypt Encryption:- 

NTRUEncrypt Encryption consists of the following 
operations- 

1) Randomly select a “small” polynomial r from dr. 

2)  Calculate the cipher text e as e ≡ r * h + m (mod q). 

NTRUEncrypt Decryption:- 

NTRUEncrypt decryption consists of the following 
operations: 

1) Calculate a ≡ center (f * e), where the center operation 
reduces its input into the interval [A, A+q−1] where A is an 
integer which decide the domain of the interval.    

2. Recover m by calculating m ≡ fp * a (mod p). 

3. CONTRIBUTION 
In this paper we have proposed a new way of doing 
encryption in the NTRU system. We have extended the key 
and have done some complexion on input massage and even 
on the public key. In out implementation we are applying 
operation of the each byte and order of the byte. On first byte 
we are exchanging the first four bit with last four bit and in 
the second byte we are exchanging the first two bit to the next 
two bit. This sequence is also followed in reverse order in 

decryption. For illustration take a byte sequence 
11110110.When occurred at the first number it is converted to 
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11111001in Fig-1.When this comes on the second or even 
places it is converted to 11111001in Fig-2. On the second 
improvement in the encryption scheme we have some 
complex operation on the key itself due to which public key 
has changed. In previous implementation we have the public 
key.                      

                           h = p * g * fq (mod q).  

 

 

Fig 1: for odd placed byte 

Where fq is the inverse of „f‟ under modulo „q‟ and * is 
convolution product of the two polynomial 

 

Fig 2: for even placed byte 

Public Key Generation - Generate two polynomials 

randomly of degree N separately. Let these are r1 and r2 and 
do Xoring for each polynomial with other randomly 
generated polynomial. Convolution product is implemented 
for r1 and r2 with modulo q (say s) and find the convolution 
product of „s‟ and polynomial g. Now obtained product is 
multiplied by constant p modulo q(say t).We obtain 
convolution of g and fq and add „s‟ and „t‟ in it in modulo q 
.Result is h polynomial which is public key. Mathematically:- 

                 r1 = r1 ^ random polynomial; 

                 r2 = r2 ^ random polynomial; 

                 s = r1 * r2 (modulo q); 

                 t = ((s * g) * q) * p) % p; 

                 h = p * g * fq (mod q) 

                 h = (p * g * fq + s + t)(mod q) 

Encryption:  

1) Randomly select a “small” polynomial r belongs to Dr 

2)  Calculate the cipher text e as e ≡ r * h + m (mod q) where 
m is message text. 

Decryption:          

In the decryption side we have private key (f, fp) (mod p). 
Now compute  

                        a = f * e 

Where e is an encrypted polynomial. Now obtain center of the 
polynomial from –q/2 to +q/2. This centering process is only 
for the maintaining the coefficient in the range between these 
–q/2 to +q/2. Now obtain the massage plain text by 

                        m = fp * a (mod p) 

Mathematical proof: 

a = f * e 

a = f * (p * r * h + f * m) (mod q) 

m = fp * a (mod p) 

m = fp * (f * p*r * h + f * m) (mod q) (mod p) 

m = fp * (f * p * r *(p * g * fq + s + t + f * m) (mod q) + m) 
(mod q)(mod p) 

m = fp * (f * p * p * r * g * fq + f * p * r * t + f * p * r * s + f 
* m)(mod q)(mod p) 

 m= (p *p * r * g * fq + p * r * r * s + fp * f * m)(mod q)(mod 
p) 

 m=m 

 Because these terms are multiple of p and when we take mod 

under p they get reduce to zero hence we get the original 
message. 

4. IMPLEMENTATION 

Public key generation: 

Input: f and g polynomial. 

Output: public key polynomial 

1. Set: r1 

2. Set: r2 

3. Set r1 = r1 ^ random polynomial 

4. Set r2= r1 ^ random polynomial 

5. Set s = r1*r2; 

6. Set t = p * g * s (mod q) 

7. Set h = (g * fq + t + s)(mod q) 

Here h is public key that provides more security when text is 
repeated more times 

Digesting Input: 

Input: g (polynomial of degree N with coefficient 0 or 1 only), 
m (plain text massage polynomial) 

Output: Plain text massages polynomial. 
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0. Start: 

1. Set: x=0,y=0 

2.0 If (x mod 2 equals 0) 

   2.1 Set m + = g; 

   2.2 Set d = deg (N); 

   2.3.0 While (y < deg (N) / 2) 

        2.3.1 Set t = m [y]; 

        2.3.2 Set m [y] = m [d + y] 

        2.3.3 Set m [d + y] = m [y]; 

 3.0 Else then 

    3.1 Set y to zero 

    3.2 Set m - = g; 

    3.2.0 While (y < deg (N)) 

       3.2.1 Set t = m [y]; 

       3.2.2 Set m [y] = m [deg (N) – y]; 

       3.2.3 Set m [deg (N) – y] = t; 

4. End:   

Undigesting Input:  

Input: g (polynomial of degree N with coefficient 0 or 1 only), 
d (decrypted massage polynomial) [8]. 

Output: Plain text massages polynomial. 

0. Start 

1. Set:  x = 0, y = 0; 

2.0 If (x mod 2 equals 0) 

   2.1 Set d = deg (N); 

   2.2.0 While (y < deg (N) / 2) 

      2.2.1 Set t = m [y]; 

      2.2.2 Set m [y] = m [d + y]; 

      2.2.3 Set m [d + y] = m [y]; 

      2.2.4 Set m + = g; 

   3.0Else then 

      3.1Set y to zero  

      3.1.0 While (y < deg (N)) 

        3.1.1 Set t = m [y]; 

        3.1.2 Set m[y] = m [deg (N) – y]; 

        3.1.3Set m [deg (N) – y] = t; 

        3.1.4Set m - = g; 

4. End; 
                           

5. OBSERVATION 
Each public key cryptosystem has its own weakness and 
provide security based on some type of hard problem. Here in 
this NTRU encryption has some of its characteristics such as 
very less memory and computational cost. Security is based 
on the hard problem and the selection of the parameter set. in 

this scheme we have integer parameter N , P , Q and four set 
choosing the number of one and two in the polynomial like df 
,dg ,dr etc. 

                                    TABLE 1 

       Comparison between NTRU and improved NTRU 

 

 Operation/entity   NTRU Improved 
Model 

Plain text block     Nlog2P    Nlog2P 

Encrypted text 
block  

   Nlog2Q   Nlog2Q 

Encryption speed     O(N2)   O(N2) 

Decryption speed     O(N2)   O(N2) 

Massage 
expansion 

   LogpQ to 1 Log pQ to 1 

Private key length 2Nlog2P bits   2Nlog2P bits 

Public key length  Nlog2Q   bits  Nlog2Q bits 

        
Now we are comparing the previous NTRU and the our model 
of on same set of parameter on each component like 
encryption and decryption and key size and other operation   

We observe that both of the NTRU previous and our model 
have the same level of key length, and cost of operation 
encryption and decryption. While the change in the public key 

makes it more secure and digesting on the input makes it more 
complex to break 

In the literature we have much public key crypto system with 

different type of hard problem including RSA based on 
difficulties of factoring problem, mackliece public key system 
on error detecting code and many others. When the modified 
scheme was compared with the other cryptosystem on key 
size and the operations we have concluded following TABLE 
II. This table concludes that NTRU message encryption varies 
even for long massage .Principle of expansion of the massage 
is exchange of the public key in massage block this is not 

significant problem. We have this solution for problem and 
this solution can also be implemented even for long massage 
with expansion of only after the first massage block. With this 
approach, from the sending side massage is with the 
polynomial with 0,1,-1 under modulo p=3,and interpreted as 
P1 for next massage block. The next massage block is 
p1*e1+m where m is first block of massage and m1 mod q 
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can be reduced exactly next block e2=p2*e2+m2 where p2 is 
calculated by squaring the m1 and reducing it by p=3. This 
process continues for massage of arbitrary length, hence this 
continues for massage of arbitrary length. 

 

 

 

 

                                TABLE 2 

          Comparisons with other public key crypto system 

 

Operation NTRU 
(improved) 

R S A Mackliece 

Encryption N2 N2 N2 

Decryption N2 N3 N2 

Public key N N N2 

Private key N N N2 

Massage 
expansion 

varies 1-1 2-1 

 

6. CONCLUSION AND FUTURE 

GUIDELINE 
This document aims to meet the requirement of more secure 
and efficient NTRU. Security is achieved by introducing some 
more complex problem into the existing implementation and 
efficiency can be achieved by having some reduced 
implementation of polynomial multiplication of inverse 

computation. The most time consuming operation in NTRU 
are product of the polynomials because that is used for even 
for all operation like key generation, encryption and 
decryption. 

In order to achieve the security we have achieved our goal to 
certain extent by modified algorithms with digesting function 
introduction. Comparison shown in this paper with other 
public key cryptosystem is much satisfying as cost remains 
the same and security increases highly. This is more important 
to build the confidence in post quantum cryptography. As this 
crypto system include very low computational requirement 

because polynomial coefficient are very small integer hence it 
is applicable for devices like mobile and embedded system 

with less computational power and which require sufficient 
amount of security[10]. 

For suggestion there can be two main areas one is reducing 
the cost of multiplication of polynomial which eventually will 
make the scheme more efficient. And the second one is using 
other scheme for security for case of repeated text. For this 
scheme digesting function- 

F(x1+x1.x2+x2.x3…xn-1.xn) can be computed and 
undigesting correspondingly at decryption side where x1, x2, 
x3…xn are the byte of the text. 
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