
International Journal of Computer Applications Technology and Research
Volume 3– Issue 6, 385 - 389, 2014, ISSN: 2319–8656

www.ijcat.com 385

Parallel Implementation of Travelling Salesman Problem
using Ant Colony Optimization

Gaurav Bhardwaj

Department of Computer Science and Engineering
Maulana Azad National Institute of Technology

Bhopal, India

Manish Pandey
Department of Computer Science and Engineering

Maulana Azad National Institute of Technology
Bhopal, India

Abstract: In this paper we have proposed parallel implementation of Ant colony optimization Ant System algorithm on GPU using
OpenCL. We have done comparison on different parameters of the ACO which directly or indirectly affect the result. Parallel
comparison of speedup between CPU and GPU implementation is done with a speed up of 3.11x in CPU and 7.21x in GPU. The
control parameters α, β, ρ is done with a result of best solution at 1, 5 and 0.5 respectively.

Keywords: Travelling Salesman Problem, Ant colony optimization, parallel, OpenCL, GPU.

1. INTRODUCTION
Travelling salesman problem [1] is an NP-hard problem in a
set of combinatorial optimization problem. In travelling
salesman problem we have to found a Hamiltonian circuit
having minimum total edge weight. TSP has various
applications such as JOB Scheduling, DNA sequencing,
designing and testing VLSI circuits, graph coloring, vehicle
routing etc. There are various methods to solve such type
problems such as ANT colony optimization, neural network,
Genetic algorithm etc.

ACO [2] is a heuristic algorithm for solving combinatorial
optimization problem. ACO imitates the behavior of real ants
to search food. Ants communicate indirectly to the agents of
their colony with a trail of a chemical substance called
pheromone. Pheromone is a chemical substance that shows
the trace of an ant. Other ants follow the smell of the food and
the trace of the pheromone to find out the minimum distance
to the food.

Complex problem such as TSP needs huge computational
power as well as time to solve. It takes lots of time for a single
processor to solve such large problems single handedly.ACO
can be implemented parallel with high efficiency.[4] Parallel
computing is the new paradigm to solve such type of
problems using General Purpose Graphical Processing Unit.
GPUs are meant to do graphical processing such as simple
arithmetic operations also on graphics in the form of matrices.
So we can utilize GPUs processor to solve our problem to
speed up the computational time.

GPU [9] consist of large no. of processors embedded together
in a chip to perform a specific type of operations. Open CL
[10] (OPEN Computing Language) is the framework used to
write programs that can be executed on heterogeneous
platforms.

This paper applies ACO to the Travelling Salesman Problem
in heterogeneous platform using OpenCL framework to
achieve parallelism in ACO. We have compared the time
taken in sequential as well as the parallel program used to
solve this problem with some standard graphs. [11]

In section 2 previous sequential approaches for ACO has been
discussed with travelling salesman problem. In section 3

Travelling salesman problem with different approaches to
solve this problem is discussed. Section 4 gives the briefing of
the Ant Colony Optimization algorithm. Section 5 gives the
parallel approach to solve TSP using ACO on GPU. Section 6
gives the experimental comparison with different parameters.

2. RELATED WORK
Travelling salesman problem is one of the oldest
mathematical problems in history. Scientist had a great
interest to solve such type of problem using different
approaches. M.Dorigo and T.stizzle in 1992 [6] has designed
an biological approach to solve such type of combinatorial
optimization problem such as Travelling Salesman Problem
called ACO. The first ACO algorithm was proposed by them
called Ant System basic approach on ACO. Then many other
algorithm were proposed based on it such Max-Min approach,
Ant colony System. All these approaches are successors of
Ant system. M.Dorigo has given the basic parallel approach to
solve ACO parallel as he has discussed the basic parallel
behavior of ants in real life. There after many parallel
approaches has been delivered with the parallel strategies.
This paper describes the parallel implementation of ACO on
heterogeneous platform using OpenCL and comparing their
parameters.

3. TRAVELLING SALESMAN
PROBLEM
Travelling Salesman Problem represents a set of problem
called combinatorial optimization problem. In TSP a salesman
is given a map of cities and he has to visit all the cities exactly
once and return back to the starting city with the minimum
cost length tour of all the possible tour present in that map.
Hence the total no. of possible tour in a graph with n vertices
is (n-1)! .

There are various approaches to solve TSP. Classical
approach to solve TSP are dynamic programming, branch and
bound which uses heuristic and exact method and results into
exact solution. But as we know TSP is an NP-hard problem so
the time complexity of these algorithms are of exponential
time. So they can solve the small problem in optimal time but
as compared to the large problem time taken by these
algorithms are quite high. So no classical approach can solve

International Journal of Computer Applications Technology and Research
Volume 3– Issue 6, 385 - 389, 2014, ISSN: 2319–8656

www.ijcat.com 386

this type of problem in reasonable time as the size of the
problem increases complexity increases exponentially.

So many alternate approaches are used to solve TSP which
may not give you the exact solution but an optimal solution in
reasonable time. Methods like nearest neighbor, spanning tree
based on the greedy approach are efficiently used to solve
such type of problems with small size. To overcome this
different other approaches based on natural and population
techniques such as genetic algorithm, stimulated annealing,
bee colony optimization, particle swarm optimization etc. are
inspired from these techniques.

4. ANT COLONY OPTIMIZATION
ANT colony optimization [5][6] technique introduced by
Marco Dorigo in 1991 is based upon the real ant behavior in
finding the shortest path between the nest and the food. They
achieved this by indirect communication by a substance called
pheromone which shows the trail of the ant. Ant uses heuristic
information of its own knowledge the smell of the food and
the decision of the path travelled by the other ants using the
pheromone content on the path. The role of the pheromone is
to guide other ants towards the food.

Ant has the capability of finding the food from their nest with
the shortest path without having any visual clues. At a given
point where there are more than one path to reach to their food
then ants distribute themselves on different paths and the path
and lay pheromone trace on that path and return with same
path. Thus the path with minimum distance will acquire more
pheromone as compared to other paths as the ants will return
faster from that path comparative to the other path. So the new
ants coming in the search of food will move with probability
towards the path having higher pheromone content as
compared to the path having lower pheromone content and in
the end all the ants will move towards the same path with the
minimum shortest path to their food. Now figure 1 shows the
behavior of ants going from the upward direction will return
early as compared to the ants going from the downward
direction so the pheromone content in the upward direction is
more as compared to the downward direction due to that in
the end all the ants will start moving towards the upward
direction which is the shortest path to their food.

 Group Fig 1: shows the behavior of real ants.

ACO uses the set of artificial ants which co-operate each other
to solve the problem and find the optimal solution of the
problem. ACO can be used to solve combinatorial
optimization problems such as Travelling Salesman Problem,
Vehicle Routing, Quadratic Assignment, Graph Coloring,
Project Scheduling, Multiple Knapsack etc. maximum of the
problems are NP-hard problem [3] i.e. they take exponential
time complexity in their worst case.

In the travelling salesman problem we are given with a set of
cities and the distance between them. We have to found a

shortest tour such that each city should be visited exactly once
and then return to the stating city. Formally we can say that
we have to found a minimal Hamiltonian circuit in a fully
connected graph.

In ACO we stimulate no. of artificial ants on a graph where
each vertex represents the city and the edge represents the
connection between the two cities [7]. Pheromone is
associated with each edge which shows the trace of the ant
can be read and modified by the ants. It is an iterative
algorithm where no. of ants is used to construct a solution
from vertex to vertex without visiting any vertex more than
once. At every vertex ant select the next vertex to be visited
stochastically that is based upon the pheromone as well as the
heuristic information available to it.

ACO algorithm
set parameters and pheromone value
 while termination condition not met do
 construct Ant solutions
 update pheromone
endwhile

in the above algorithm artificial ants will construct a solution.
Ants start with an empty partial solution. At each iteration
partial solution is modified by adding a set of components and
updating the pheromone content. Creating a solution is
completely based on a probabilistic stochastic mechanism.
Updating pheromone value means increasing the pheromone
content on the edges having good solution in order to find the
optimal solution.

4.1 Ant System
Ant system was the first algorithm proposed under ACO to
solve TSP problem [8]. In this algorithm all the ants update
their pheromone values after completing a solution. In the
construction of a solution an ant chooses next node to be
visited using a stochastic mechanism. An ant k at city i has
not visited set of cities Sp then Pij be the probability to visit
edge k after edge i.

௜ܲ௝
௞ = ቐ

ఛ೔ೕ
ഀఎ೔ೕ

ഁ

∑ ఛ೔ೕ
ഀఎ೔ೕ

ഁ
ೕചೄ೛

0
							݂݅	݆߳ܵ௣ (1)

SP represents the set of cities which has not been visited yet
and to be visited again so that the probability of the ant
visiting a city which has already visited becomes 0. Where τij
is the pheromone content on the edge joining node i to j . ηij
represents the heuristic value which is inverse of the distance
between the city i to j, which is given by:

௜௝ߟ = ଵ
ௗ೔ೕ

Where dij is the distance between the city i to j. α and β
represents the dependency of probability on the pheromone
content or the heuristic value respectively. Increasing the
value of α and β may vary the convergence of ACO.

After solution construction we have to update the pheromone
accordingly, as follows:

߬௜௝
	
←	(1− .(ߩ ߬௜௝ + 	෍∆

௠

௞ୀଵ

߬௜௝
௞

International Journal of Computer Applications Technology and Research
Volume 3– Issue 6, 385 - 389, 2014, ISSN: 2319–8656

www.ijcat.com 387

Where ρ is the evaporation rate, m is the number of ants, and
∆߬௜௝௞ is the quantity of pheromone laid on edge(i,j) by an ant k:

Δ߬௜௝௞ = ቊ
ܳ
௞ܮ 		ൗ

0 ݁ݏ݅ݓݎℎ݁ݐ݋
,݅)	݁݃݀݁	ݏ݁ݏݑ	݇	ݐ݊ܽ	݂݅ ,ݎݑ݋ݐ	ݏݐ݅	݊݅(݆

Where Q is a constant and Lk is the length of the tour
constructed by an ant k.

5. PARALLEL IMPLEMENTATION OF
ACO ON TSP
The main purpose of this section is to show parallel
implementation of ant system for TSP. Biologically ants use
parallel approach in search of their food. Ants perform task
based parallelism to search their food. All the ants search their
food parallel simultaneously and synchronize with the help of
the pheromone content in the ground similarly we can use this
approach in artificial ants in ACO [12]. Parallel model used in
ACO is a master/worker paradigm. Where master controls the
workers by communicating and capturing the global
knowledge where as worker implements the search. In this
model same copies of the ant system algorithm are
simultaneously and randomly executed using different random
source.

ACO is an iterative approach where at each iteration master
shares the global knowledge of pheromone to its worker ants
to construct a solution. When 1000 of ants perform the search
operation then the solution construction becomes
comparatively fast as compared to sequential
implementations. Parallelism where large number of threads
can be executed simultaneously can be done using GPGPU
(general purpose graphical processing unit). GPU [9] consist
of hierarchy of processing elements and their memory. An
AMD GPU consist of more than one SIMD (single instruction
multiple data) computation engine. Where each computation
engine consists of multiple thread processor which executes
same instruction all the time simultaneously but data items
may vary. Where each thread processor have their own L1
cache. Each thread processor is a four or five way VLIW
(very large instruction word) processor consisting of four or
five ALUs respectively. Parallelism can be attained at both the
level of thread processor and ALUs.

 The two main steps of the ACO solution construction and
pheromone updating are thoroughly discussed.

5.1 Solution construction Kernel
In solution construction task based parallelism approach is
used as each ant performs their task independent of each other
to find the best tour. As we have discussed earlier in this
phase ants are allocated the source node randomly and they
have to visit each node exactly once and have to reach back to
their source node. On each iteration they have to choose their
next node using probabilistic stochastic mechanism. This
phase has inbuilt parallelism at the level of each ant as the
biological ant find their tour. Each ant can be identified as a
thread to construct the solution.

SOLUTION_CONSTRUCTION(weight_a, pheromone_p)
Source=get_global_id(0)
Length=0
Initialize all the nodes unvisited;
I=source

Starting from source while all the nodes visited do
 For every unvisited node j from the current node i

Calculate the node with the max
probability using (1)

 Visit the node j with max probability
 Length=length +weight_aij;
 Mark j as the node traversed
 Enter j in the tour
 i=j
Enter source node in to the tour
Length = length + aj source

Solution construction kernel calculate the heuristic
information to visit city j from the city i. computationally it is
expensive to construct a solution a with a order of time
complexity (n2). However this kernel has memory related
issues to maintain the ant memory for the tour constructed,
visited node, weight matrix and pheromone matrix. This type
of approach is basically suitable for the problems having large
no. of cities. Maximum number of threads can be produced in
this problem is equal to the no. of cities. Problem having less
no. of cities will have less threads and less parallelism which
leads to improper utilization of GPU resources.

5.2 Pheromone Update Kernel
It is a data parallelism approach where all the threads are
performing the same task on different data sets. Pheromone
update consist of pheromone evaporate and pheromone
update. Pheromone evaporation can be done simultaneously to
each edge parallel as data parallelism with respect to other
edge as there is no relevance in evaporation. For pheromone
evaporation we call N no. of thread for each row of our
pheromone matrix and the pheromone is evaporated parallel.
The work group for pheromone evaporation is of size N.
Whereas pheromone is updated using a kernel where the tour
of the ant is passed and the length of the tour so for every
node the pheromone content is updated. Size of the
workgroup for the pheromone update is also of size N.

Pheroemene_update(pheromone_p,length,tour)
Q=1/length
for(k=0;k<N;k++)
 i=tour[k]
 j=tour[k+1]
 pheromone_pij=pheroemene_pij*Q

However this kernel has synchronization related issues which
can be handled using barriers such as pheromone can be
updated by an ant after the construction of solution only, no
ant can update the pheromone before construction of solution.

6. COMPARATIVE ANALYSIS AND
PERFORMANCE EVALUATION
We implemented the algorithm sequential as well as parallel
to check the speedup of the algorithm to find the solution. We
have also parameterized all the parameters using different
values so as to find the best parameters for our solution.

International Journal of Computer Applications Technology and Research
Volume 3– Issue 6, 385 - 389, 2014, ISSN: 2319–8656

www.ijcat.com 388

6.1 Comparison of different values for the
parameters
ACO depends directly or indirectly on differne parameters
such as α,β,ρ etc. these parameters affect the probability of the
stochastic mechanism in finding the next node to be visited.
Parameter α shows the dependency of the pheromone to find
the next city to visit. If the value of α is too high then it shows
the dependency of the algorithm on the pheromone value
which may lead to an suboptimal result as the new ant will
follow the path followed by the previous ants leads to the
initial stagnation. Whereas very low value of α shows the low
dependency of the algorithm on the pheromone content which
may lead to follow the path with the nearest neighbor. Acc.
experiment we concluded that the value of α should be nearly
equivalent to 1 as shown in figure.

Fig 2 Graph showing the avg. tour length on increasing
value of α.

Parameter β shows the dependency of the algorithm on the
heuristic value. Similarly if the value of β is too high than it
shows that the algorithm depends upon the heuristic value and
it will choose the next city with a minimum distance where as
if it is too low than only pheromone amplification is at work.
Acc. to experiment we concluded that the value of α should be
nearly equivalent to 5 as shown in figure as it is giving the
best tour length.

Fig 3 Graph showing the avg. tour length on increasing
value of β.

 ρ is the evaporation rate of the pheromone. Pheromone
evaporation is necessary in ACO as if we will not evaporate
the pheromone content than it may lead to the problem of
stagnation. As the initial pheromone update may lead to the
suboptimal solution. High pheromone evaporation rate (ρ)
doesn’t affect the pheromone content as the change is too less.
Whereas lower value of ρ leads to the negative affect for the
pheromone content as it becomes too low to be recognized.

Fig 4 Graph showing the avg. tour length on increasing
value of ρ.

6.2 Speedup Comparison
OpenCL parallel implementation on CPU and GPU are tested
on the following hardware specifications:-:
AMD Radeon HD 6450(GPU): 2 Compute units, 625 MHz
clock, 2048MB Global Mem., 32KB Local Mem., 256 work
group size on a system having Intel Core i5 CPU 650 @ 3.2
GHz and 2048MB RAM with AMD APP SDK v2.8.
We have implemented ACO sequentially on the above given
hardware specification with a randomly generated graph with
different no. of nodes as well as some standard graphs to
compare our results. Comparative analysis of the speed up of
graph is shown with the sequential, CPU parallel and GPU
parallel. In GPU parallel we have considered only the kernel
execution time.
Fig 5 shows the speedup between sequential, CPU parallel
and GPU parallel. In CPU parallel we have used OpenCL
platform to rum the algorithm on CPU parallel. In GPU
parallel same program is implemented on GPU. With respect
to that we are able to achieve 3.11 times speed up in CPU and
up to 7.21 times speed up in GPU.

7. CONCLUSION AND FUTURE WORK
All the parameters of ACO in ant system is been investigated
to their best values as α=1, β=5 and ρ=0.5. parallel
implementation is done on CPU and GPU using OpenCL.
Where GPU parallelization has given best results with a speed
up of . we will look for hybrid implementation of ACO on
GPU with overcoming the limitation of GPU by utilizing the
resources properly with data fragmentation and to optimize
our algorithm to gain more speedup.

250

255
260

265
270

275

280

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2

av
g

to
ur

 le
ng

th

increasing value of alpha

250

255

260

265

270

275

280

1 2 3 4 5 6 7 8 9

av
g.

 to
ur

 le
ng

th

increasing value of beta

250
255
260
265
270
275
280

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

av
g.

 to
ur

 le
ng

th

increasing value of ρ

International Journal of Computer Applications Technology and Research
Volume 3– Issue 6, 385 - 389, 2014, ISSN: 2319–8656

www.ijcat.com 389

Fig 5 Shows the speed up between sequential, CPU parallel and GPU parallel

8. REFERENCES
[1] E.Lawler, J.Lenstra, A.Kan, and D.Shomsys Wiley New

York, 1987 The Travelling Salesman Problem

[2] M.Dorigo and T.Stizzle : Bradford Company 2004. Ant
Colony Optimization.

[3] C.Blum. Physics of life reviews, vol. 2, no.4, pp. 353-
373, 2005. Ant colony optimization: Introduction and
recent trends.

[4] Y-S. You. Genetic and Evolutionary computation, 2009.
Parallel ant system for Travelling Salesman Problem.

[5] K.D. boese , A.B. Kahng, and S.Muddu .Operations
Research letters ,16:101-113,1994. A new adaptive
multistart technique for combinatorial global
optimization.

[6] M. Dorigo. PhD thesis, Politecnico di Milano, 1992.
Optimization, Learning, and Natural Algorithms

[7] T. Stizzle and H. H. Hoos. Future Generation Computer
Systems, vol. 16, no8, pp. 889–914, 2000. MAX–MIN
ant system

[8] M. Dorigo and T. Stizzle, A Bradford Book,2004. Ant
Colony Optimization.

[9] Ying Zhang. PHD Thesis 2006. Performance and power
comparisons between fermi and cypress GPUs.

[10] A. Munshi, B. R. Gaster, T.G. Mattson, J. Fung, D.
Ginsburg, Addison-Wesley pub., 2011. OpenCL
Programming Guide.

[11]] G. Reinelt, ORSA Journal on Computing, vol. 3, pp.
376–384, 1991. Tsplib–a traveling salesman problem
library.

[12] M. Manfrin, M. Birattari, T. Stizzle, and M. Dorigo. 5th
International Workshop on Ant Colony Optimization and
Swarm Intelligence, vol. LNCS 4150. Springer-Verlag,
2006, pp. 224–234. Parallel ant colony optimization for
the traveling salesman problem.

1

10

100

1000

10000

100000

4 8 16 32 64 128 256 512 1024 2048

Av
g.

 to
ur

 L
en

gt
h

No. of Cities

