
International Journal of Computer Applications Technology and Research 
Volume 3– Issue 7, 395 - 399, 2014, ISSN:  2319–8656 

www.ijcat.com  395 

A Review of Constraint Programming  

Poonam Dabas 
Department of CSE 

U.I.E.T, Kurukshetra University 
Kurukshetra, India 

Vaishali Cooner 
Department of CSE 

U.I.E.T, Kurukshetra University 
Kurukshetra, India 

 
  

Abstract: A constraint is defined as a logical relation among several unknown quantities or variables, each taking a value in a given 
domain. Constraint Programming (CP) is an emergent field in operations research. Constraint programming is based on feasibility 
which means finding a feasible solution rather than optimization which means finding an optimal solution and focuses on the 
constraints and variables domain rather than the objective functions. While defining a set of constraints, this may seem a simple way to 
model a real-world problem but finding a good model that works well with a chosen solver is not that easy. A model could be very 
hard to solve if it is poorly chosen. 
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1. INTRODUCTION 
The development of high-tech systems is very difficult 
without mathematical modeling and analysis of the system 
behavior.  For this, mathematical models are revealed in order 
to solve the tasks in many areas like in the modern 
engineering sciences like control engineering, 
communications engineering, and robotics. Therefore, the 
main focus is that without neglecting mathematical accuracy 
on comprehensibility and real-world applicability. 
Mathematical engineering has various methods to find the 
optimal and feasible solution like: Linear programming, Non- 
Linear programming, stochastic programming and Constraint 
programming. 

Linear programming is effective only if the real world is 
reflected in the model used. They also sometimes give results 
that don’t make sense in the real world. Even some situations 
have many possibilities to fit into linear programming. A 
constraint is a logical relation among several unknown 
quantities (or variables), each taking a value in a given 
domain.  

2. CONSTRAINT PROGRAMMING 
A logical relation among several unknown variables is known 
as a constraint, where each variable takes a value in a given 
domain. The basic idea behind constraint programming 
framework is to model the problem as a set of variables with 
domains and a set of constraints [16]. The possible values that 
the variables can take are restricted by the constraints. 

In operations research constraint programming (CP) is an 
emergent field. It is based on finding a feasible solution i.e. 
feasibility rather than finding an optimal solution i.e. 
optimization. Basic CP constructs, the interface for advanced 
scheduling applications, and search specification are provided 
which are essential to a language supporting constraint 
programming and are represented as discrete variables [1].  

The focus is not done on objective function rather than the 
constraints and variables domain. It possesses a strong 
theoretical foundation though it is quite new, a widespread 
and very active community around the world and an arsenal of 
different solving techniques. In problems with heterogeneous 
constraints CP has been successfully applied in planning and 
scheduling. 

A programming paradigm where relations between variables 
are stated in the form of constraints is known as constraint 
programming. In other programming languages step or 
sequence of steps is not specified to execute. Because of this 
constraint programming a known as a form of declarative 
programming.  

Various kinds of constraints are used in constraint 
programming: one is those used in constraint satisfaction 
problems for example- A or B is true, other one is those 
solved by the simplex algorithm for example- x ≤ 5, and 
others.  

To solve scheduling problems constraint programming is an 
interesting approach. Activities are defined by their starting 
date in cumulative scheduling; their duration and the amount 
of resource necessary are also defined for their execution.  

Constraints are defined as just relations and which relation 
should hold among the given decision variables is stated by a 
constraint satisfaction problem (CSP). It may seem a simple 
while defining a set of constraints as a way to model a real- 
world problem but it is not easy to find a model that works 
well with a chosen solver. It is really hard to solve a poorly 
designed model. To take advantage of the features of the 
model such as symmetry solvers can be designed to save time 
in finding a solution. As many are over constrained this may 
exist as another problem with modeling real-world problems.  
Any language can be used to implement constraint solver. 

For all the constraints to be satisfied there must exist an 
assignment of values to variables. To reduce the 
computational effort this technique is used which is needed to 
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solve combinatorial problems. Constraints are used in a 
constructive mode to deduce new constraints, not only to test 
the validity of a solution. Constraints also detect 
inconsistencies rapidly. 

 

  Figure. 1 Behavior of a Constraint Programming system 

Constraint propagation is usually incomplete for complexity 
reasons. So, not all but some of the consequences of 
constraints are deduced. All inconsistencies cannot be 
detected by constraint propagation.  

To determine if the CSP instance is consistent or not tree 
search algorithms must be implemented. The figure depicts 
the overall behavior of a constraint-based system.  

First, variables and  constraints are defined as terms of the 
problem 

Then, constraint propagation algorithms are specified. Some 
pre-defined constraints can be used by the constraint 
programming tool like scheduling constraints for which the 
corresponding propagation algorithms have been pre-
implemented. 

Finally, at last the decision-making processes. It is the way the 
search tree is built, and is specified. How new constraints are 
added to the system are shown in it like ordering a pair of 
activities. 

 

3. REVIEW ANALYSIS 
Over the past few years, there has been lot of research going 
on in the field of mathematical engineering to find the optimal 
solutions for the problems. Researchers have done a lot in this 
field which is discussed below: 

 Willem-Jan van Hoeve[1] has presented the 
modeling language for basic constraint programming and 
advanced scheduling constructs and specify how search can 
be controlled. It provides easy development of hybrid 
approaches such as CP based column generation. Focus here 
is done on the constraint programming interface of AIMMS 
which is based on an algebraic syntax and offers access to 
integer linear programming, quadratic programming (QP) and 
nonlinear programming (NLP).  

 Arnaud Lallouet, M. lopez, L. Martin, C. Vrain [2] 
have made an algorithm which is designed combining the 
major qualities of traditional top-down search and bottom-up 
search techniques. The contributions of this paper are setting 
the framework of learning CSP specifications, then the choice 
of the rule language, and it’s rewriting into CSP and the 
learning algorithm which allows guiding search when 
traditional method fails. In this the activity of finding the 
constraints that are to be stated is considered as a crucial part 
and a lot of work has been spent on the understanding and 
automation of modeling tasks for the novice users who have a 
limited knowledge regarding how to choose the variables. A 
framework is designed to bridge the gap between constraint 
programming modeling language and ILP (Inductive Logic 
Programming). The very first step of the framework consists 
in learning a CPS (Constraint Problem Specification) 
describing the target problem. ILP framework and its 
applications to learning problems are presented. 

 Barry O’Sullivan [3] has presented technical 
challenges in the area of constraint model acquisition, 
formulation and reformulation algorithms for global 
constraints and automated solving and it also presents the 
metrics by which success and progress can be measured. The 
motivation here is to reduce the burden on constraint 
programmers and to increase the scope of problems that can 
be handled alone by domain experts. Modeling defines the 
problem, in terms of variables that can take different values. 
Progress is evaluated empirically in constraint programming. 
A model for practical problem as a constraint satisfaction 
problem (CSP) is preferred and available constraint 
programming tools are used to solve it. Generic methods from 
the machine learning field can be applied to learn an 
appropriate formulation of the target problem as a CSP. The 
filtering algorithm is difficult to design and this is considered 
the major challenge that one faces when designing a new 
global constraint. 

 Christian Bessiere, R. Coletta, T. petit [4] have 
presented a framework for learning implied global constraints 
which is presented in a constraint network assumed to be 
provided by a non-expert user. As global constraints are key 
feature of constraint programming learning global constraints 
is important. A motivation example is considered and it is 
shown that if it is required that the model is to be solved with 
more tasks then the need to improve model is needed. 
Constraint network is defined by a set of variables and a set of 
domains of values for the variables. The tighter the learned 
constraint is, the more promising its filtering power is. A 
general process to learn the parameters of implied global 
constraints is given. The focus is made on global constraints 
and set of parameters. Efficient algorithm exists to propagate 
when the cardinalities of the value are parameters that take 
values in a range. A model was generated to minimize the 
sum of preference variables. This was considered the first 
approach that derives implied global constraints according to 
the actual domains. Experiments show that a very small effort 
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spent learning implied constraints with this technique can 
improve the solving time. 

 Steven J. Miller [5] has described linear 
programming as an important generalization of linear algebra. 
Various real world situations are modeled successfully using 
programming. The problems that can be solved by linear 
programming are discussed. Binary integer linear 
programming is also discussed which is an example of a more 
general problem is called Integer Linear Programming. The 
difficulty here due to the fact that a problem may have 
optimal real solutions and optimal integer solutions but both 
the solutions need not be closed to each other. The simplex 
method is used for solving the linear problems to find the 
optimal solutions. It has two phases, one is to find a basic 
feasible solution and other one is to find a basic optimal 
solution, given a basic feasible solution. If no optimal solution 
exists this phase produces a sequence of solutions that are 
feasible with their cost tending to minus infinity. Algorithms 
are defined for them. The time for finding the optimal solution 
is also considered as a major factor here. 

 Nicholas Nethercte, P J. Stukcey, R. Becket, S. 
Brand, G J. Duck and Guido Tack [6] have presented 
MiniZinc as a simple and expressive CP modeling language. 
It is known that there is no standard modeling language for 
constraint programming problems so most solvers have their 
own language for modeling. The experimentation and 
comparison between different solvers is encouraged with a 
standard language for modeling CP. This MiniZinc problem 
has two parts- model and data which may be in separate files. 
The assignments to parameters declared in the model are 
contained in the data file. The model file is not attached to any 
particular data file. Boolean, integers, and floats are the three 
scalar types provided and sets and arrays are two compound 
types provided. The MiniZinc is translated to FlatZinc in two 
parts as flattening and the rest. Flattening is done in a number 
of steps to reduce the model and data as much as possible. 
The order of the steps is not fixed. After flattening, post 
flattening steps are applied. Different MiniZinc to FlatZinc 
converters are used. The main goal here was to define a 
language which is not too big but expressive. 

 Alan M. Frisch, M. Grum, C. Jefferson, B.M. 
Hernandez, Ian Miguel [7] have discussed a new formal 
language ESSENCE for specifying combinatorial problems 
which provides a high level of abstraction. This language was 
a result of attempt to design a formal language that enables 
abstract problem. For this language no expertise in CP should 
be needed, it is accessible to anyone with knowledge of 
discrete mathematics as it is based on the notation and 
concepts of discrete mathematics. It provides high level of 
abstraction stating that the language should not force a 
specification to provide unnecessary information. This 
language provides an exceptionally rich set of constructs for 
expressing quantification. It also supports complex, nested 
types and also its result can be specified without modeling 
them. 

Adrian Petcu [8] has discussed in brief about efficient 
optimization techniques that are essential to coordinate to 
business companies and distributed solution processes are 
desirable as they allow the participating actors to keep control 
on their data and also offer privacy.  

Many key issues are presented that are present in this domain 
like the actors involved in the distributed decision processes 
do not have the global knowledge and overview. The goal of 
constraint optimization is to find the best assignment of values 
to the variables so that utilities are maximized and cost is 
minimized. A new technique based on dynamic programming 
was developed for distributed optimization which was a utility 
propagation mechanism and works on constraint problems.  

It requires only a linear number of messages for finding the 
optimal solution. These algorithms for distributed constraint 
optimization have not been applied to large scale due to 
complexity reason. 

 Brahim Hnich, S.D. Prestwich, E. Selensky, B.M. 
Smith[9] have developed models for constraint programming 
for finding an optimal covering array. It is shown that the 
compound variables that represent tuples of variables in the 
original model, allow the constraints of the problem to be 
represented more easily, propagating better. The optimality of 
existing bounds is proved for finding the optimal solutions for 
moderate size array. In covering test problems instances are 
used with coverage strengths. Number of parameters here is 
varied. It has shown that for moderate problem size one can 
find provably optima solution using CP approach. One of the 
advantages of CP is easy handling of side constraints i.e. 
simply by adding them to the model. 

 C. Bessiere, J. Quinqueton, G. Raymond [10] have 
proposed an automated model to generate different viewpoints 
for the problem we are to model. The main idea here is to 
build a viewpoint enough to describe many different solutions 
of problems also describes a solution of the target problem. 
Historical data is with which it is started and historical data is 
used as solutions to problems close to the target problems. 
From this data candidate variables are extracted. So this can 
be seen that these viewpoints are capable of describing the 
historical solutions and also the solutions of our target 
problem. The goal here is to build viewpoints which match 
the given historical data. For this candidate variables are 
determined according to the history. A set of potential 
viewpoints are obtained out of which more relevant is selected 
to build constraint models efficiently. 

 P.E. Hladik. A.M. Deplanche, N. Jussien, H. 
Cambazard [11] has presented an approach to solve hard real 
time allocation problem i.e. to assign periodic tasks to 
processors in context of fixed priority preemptive scheduling. 
Bendors decomposition is also used as a way of learning when 
the allocation yields a valid solution. The problem is 
distributed in systems that belongs to a class. The authors 
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presents a decomposition based method which separates the 
allocation problem from the scheduling one. The three classes 
that the constraint allocation problem must respect are timing, 
resource, and allocation constraints. For solving a master 
problem using constraint programming, the problem needs to 
be translated into CSP. The subproblem is considered as to 
check whether a valid solution produced by master problem is 
schedulable or not. If no data is sent then deadlines can 
correspond to non-communicating tasks. The overall problem 
is split into a master problem for allocation and resource 
constraints and a subproblem for timing constraints. The 
learning technique is used in an effort to combine the various 
issues into a solution that satisfies all constraints. 

 Julia L.Higle [12] has presented an introduction to 
stochastic programming models. Stochastic linear 
programming is resulted when some of the data elements in a 
linear program are appropriately described using some 
random variables. An example is illustrated giving the reason 
why SP model is preferred and some essential features of a 
stochastic program are identified. Stochastic programs are 
difficult to solve and formulate. When the size of the problem 
increases we can easily see that the solution difficulties 
increase as well. Sensitivity analysis is done which provides a 
sense of security and is important. It is used to study the 
robustness of the solution to a linear programming model. It is 
done for the accuracy of the data to check whether the 
solution changes or not on changing the data. If the solution 
remains same it is believed that the solution is appropriate and 
vice versa. All the uncertainties should be included in the 
model. 

Philippe Refalo [13] has presented a new general purpose 
strategy for constraint programming which is inspired from 
integer programming technique. The importance of a variable 
for the reduction of the search space is measured by the 
impact. Designing the search strategy is difficult in integer 
programming whereas the concept of domain reduction is 
easier to understand and the use design of a search strategy is 
easier in constraint programming. In the impact based search 
strategy, by storing the observed importance of variables 
impacts permit us to benefit from the search effort made up to 
a certain node. With some standard strategies some instances 
remain unsolved which are solved by this technique. Certain 
principles are defined here for reducing the search effort. 
When a value is assigned to a variable in constraint 
programming, constraint propagation reduces the domains of 
other variables defined. 

Y.C Law, J.H.M. Lee [14] has introduced model induction 
which is a systematic transformation of constraints in an 
existing model to constraints in another viewpoint. Three 
ways of combining redundant models are proposed using 
model induction, another way is model channeling, and the 
last is model intersection. It is also investigated how the 
problem formulation and reformulation affect execution 
efficiency of constraint solving algorithms. For the 
formulation process the variables and the domain of the 

variables is to be determined. The induced model is result of 
the model induction. The three ways of combining the 
redundant models are proposed so as to utilize the redundant 
information in enhancing constraint propagation. Alternate 
ways of generating models in a different viewpoint from 
existing model are made. 

 H.Y. Benson, D.F. Shanno, R.J. Vanderbei [15] 
have analyzed the performance of several optimization codes 
on large-scale nonlinear optimization problems. The size of 
problem is defined to the number of variables and the number 
off constraints. Some of the codes are tested and presented 
available for solving large scale NLP’s. To identify the 
features of these codes that are efficient is the goal. 
Infeasibilities and unboundedness are detected in the problem 
as early as possible. Performance of the algorithms running on 
the same set of problems is compared to simple compute an 
estimate of the probability that an algorithm performs. A 
number of conclusions concerning specific algorithm details 
exits if various algorithms are compared. Numerical result for 
solving large scale nonlinear optimization problems is 
presented. The performance of each solver is explained easily 
and predicted based on the characteristics. 

4. CONCLUSION 
There are many challenges faced by mathematical engineering 
approaches to find the optimal solution. The common 
weakness to all of the approaches is the assumption that the 
input data are perfectly accurate. Many benefits of using this 
approach are discussed as visualization of results using 
activities and resources. From an existing model another 
model of a different viewpoint can be generated in a 
systematic way. Experiments show that we can improve the 
solving time by very small effort is spent in learning. But at 
the same time it is too expensive. There are many challenges 
as: these rely heavily on supervision of an expert and also 
they are not capable of acquiring a description of the problem 
class. 
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