
International Journal of Computer Applications Technology and Research
Volume 3– Issue 7, 395 - 399, 2014, ISSN: 2319–8656

www.ijcat.com 395

A Review of Constraint Programming

Poonam Dabas
Department of CSE

U.I.E.T, Kurukshetra University
Kurukshetra, India

Vaishali Cooner
Department of CSE

U.I.E.T, Kurukshetra University
Kurukshetra, India

Abstract: A constraint is defined as a logical relation among several unknown quantities or variables, each taking a value in a given
domain. Constraint Programming (CP) is an emergent field in operations research. Constraint programming is based on feasibility
which means finding a feasible solution rather than optimization which means finding an optimal solution and focuses on the
constraints and variables domain rather than the objective functions. While defining a set of constraints, this may seem a simple way to
model a real-world problem but finding a good model that works well with a chosen solver is not that easy. A model could be very
hard to solve if it is poorly chosen.

Keywords: Constraint Programming; Optimization; feasibility; problems; relations

1. INTRODUCTION
The development of high-tech systems is very difficult
without mathematical modeling and analysis of the system
behavior. For this, mathematical models are revealed in order
to solve the tasks in many areas like in the modern
engineering sciences like control engineering,
communications engineering, and robotics. Therefore, the
main focus is that without neglecting mathematical accuracy
on comprehensibility and real-world applicability.
Mathematical engineering has various methods to find the
optimal and feasible solution like: Linear programming, Non-
Linear programming, stochastic programming and Constraint
programming.

Linear programming is effective only if the real world is
reflected in the model used. They also sometimes give results
that don’t make sense in the real world. Even some situations
have many possibilities to fit into linear programming. A
constraint is a logical relation among several unknown
quantities (or variables), each taking a value in a given
domain.

2. CONSTRAINT PROGRAMMING
A logical relation among several unknown variables is known
as a constraint, where each variable takes a value in a given
domain. The basic idea behind constraint programming
framework is to model the problem as a set of variables with
domains and a set of constraints [16]. The possible values that
the variables can take are restricted by the constraints.

In operations research constraint programming (CP) is an
emergent field. It is based on finding a feasible solution i.e.
feasibility rather than finding an optimal solution i.e.
optimization. Basic CP constructs, the interface for advanced
scheduling applications, and search specification are provided
which are essential to a language supporting constraint
programming and are represented as discrete variables [1].

The focus is not done on objective function rather than the
constraints and variables domain. It possesses a strong
theoretical foundation though it is quite new, a widespread
and very active community around the world and an arsenal of
different solving techniques. In problems with heterogeneous
constraints CP has been successfully applied in planning and
scheduling.

A programming paradigm where relations between variables
are stated in the form of constraints is known as constraint
programming. In other programming languages step or
sequence of steps is not specified to execute. Because of this
constraint programming a known as a form of declarative
programming.

Various kinds of constraints are used in constraint
programming: one is those used in constraint satisfaction
problems for example- A or B is true, other one is those
solved by the simplex algorithm for example- x ≤ 5, and
others.

To solve scheduling problems constraint programming is an
interesting approach. Activities are defined by their starting
date in cumulative scheduling; their duration and the amount
of resource necessary are also defined for their execution.

Constraints are defined as just relations and which relation
should hold among the given decision variables is stated by a
constraint satisfaction problem (CSP). It may seem a simple
while defining a set of constraints as a way to model a real-
world problem but it is not easy to find a model that works
well with a chosen solver. It is really hard to solve a poorly
designed model. To take advantage of the features of the
model such as symmetry solvers can be designed to save time
in finding a solution. As many are over constrained this may
exist as another problem with modeling real-world problems.
Any language can be used to implement constraint solver.

For all the constraints to be satisfied there must exist an
assignment of values to variables. To reduce the
computational effort this technique is used which is needed to

International Journal of Computer Applications Technology and Research
Volume 3– Issue 7, 395 - 399, 2014, ISSN: 2319–8656

www.ijcat.com 396

solve combinatorial problems. Constraints are used in a
constructive mode to deduce new constraints, not only to test
the validity of a solution. Constraints also detect
inconsistencies rapidly.

 Figure. 1 Behavior of a Constraint Programming system

Constraint propagation is usually incomplete for complexity
reasons. So, not all but some of the consequences of
constraints are deduced. All inconsistencies cannot be
detected by constraint propagation.

To determine if the CSP instance is consistent or not tree
search algorithms must be implemented. The figure depicts
the overall behavior of a constraint-based system.

First, variables and constraints are defined as terms of the
problem

Then, constraint propagation algorithms are specified. Some
pre-defined constraints can be used by the constraint
programming tool like scheduling constraints for which the
corresponding propagation algorithms have been pre-
implemented.

Finally, at last the decision-making processes. It is the way the
search tree is built, and is specified. How new constraints are
added to the system are shown in it like ordering a pair of
activities.

3. REVIEW ANALYSIS
Over the past few years, there has been lot of research going
on in the field of mathematical engineering to find the optimal
solutions for the problems. Researchers have done a lot in this
field which is discussed below:

 Willem-Jan van Hoeve[1] has presented the
modeling language for basic constraint programming and
advanced scheduling constructs and specify how search can
be controlled. It provides easy development of hybrid
approaches such as CP based column generation. Focus here
is done on the constraint programming interface of AIMMS
which is based on an algebraic syntax and offers access to
integer linear programming, quadratic programming (QP) and
nonlinear programming (NLP).

 Arnaud Lallouet, M. lopez, L. Martin, C. Vrain [2]
have made an algorithm which is designed combining the
major qualities of traditional top-down search and bottom-up
search techniques. The contributions of this paper are setting
the framework of learning CSP specifications, then the choice
of the rule language, and it’s rewriting into CSP and the
learning algorithm which allows guiding search when
traditional method fails. In this the activity of finding the
constraints that are to be stated is considered as a crucial part
and a lot of work has been spent on the understanding and
automation of modeling tasks for the novice users who have a
limited knowledge regarding how to choose the variables. A
framework is designed to bridge the gap between constraint
programming modeling language and ILP (Inductive Logic
Programming). The very first step of the framework consists
in learning a CPS (Constraint Problem Specification)
describing the target problem. ILP framework and its
applications to learning problems are presented.

 Barry O’Sullivan [3] has presented technical
challenges in the area of constraint model acquisition,
formulation and reformulation algorithms for global
constraints and automated solving and it also presents the
metrics by which success and progress can be measured. The
motivation here is to reduce the burden on constraint
programmers and to increase the scope of problems that can
be handled alone by domain experts. Modeling defines the
problem, in terms of variables that can take different values.
Progress is evaluated empirically in constraint programming.
A model for practical problem as a constraint satisfaction
problem (CSP) is preferred and available constraint
programming tools are used to solve it. Generic methods from
the machine learning field can be applied to learn an
appropriate formulation of the target problem as a CSP. The
filtering algorithm is difficult to design and this is considered
the major challenge that one faces when designing a new
global constraint.

 Christian Bessiere, R. Coletta, T. petit [4] have
presented a framework for learning implied global constraints
which is presented in a constraint network assumed to be
provided by a non-expert user. As global constraints are key
feature of constraint programming learning global constraints
is important. A motivation example is considered and it is
shown that if it is required that the model is to be solved with
more tasks then the need to improve model is needed.
Constraint network is defined by a set of variables and a set of
domains of values for the variables. The tighter the learned
constraint is, the more promising its filtering power is. A
general process to learn the parameters of implied global
constraints is given. The focus is made on global constraints
and set of parameters. Efficient algorithm exists to propagate
when the cardinalities of the value are parameters that take
values in a range. A model was generated to minimize the
sum of preference variables. This was considered the first
approach that derives implied global constraints according to
the actual domains. Experiments show that a very small effort

International Journal of Computer Applications Technology and Research
Volume 3– Issue 7, 395 - 399, 2014, ISSN: 2319–8656

www.ijcat.com 397

spent learning implied constraints with this technique can
improve the solving time.

 Steven J. Miller [5] has described linear
programming as an important generalization of linear algebra.
Various real world situations are modeled successfully using
programming. The problems that can be solved by linear
programming are discussed. Binary integer linear
programming is also discussed which is an example of a more
general problem is called Integer Linear Programming. The
difficulty here due to the fact that a problem may have
optimal real solutions and optimal integer solutions but both
the solutions need not be closed to each other. The simplex
method is used for solving the linear problems to find the
optimal solutions. It has two phases, one is to find a basic
feasible solution and other one is to find a basic optimal
solution, given a basic feasible solution. If no optimal solution
exists this phase produces a sequence of solutions that are
feasible with their cost tending to minus infinity. Algorithms
are defined for them. The time for finding the optimal solution
is also considered as a major factor here.

 Nicholas Nethercte, P J. Stukcey, R. Becket, S.
Brand, G J. Duck and Guido Tack [6] have presented
MiniZinc as a simple and expressive CP modeling language.
It is known that there is no standard modeling language for
constraint programming problems so most solvers have their
own language for modeling. The experimentation and
comparison between different solvers is encouraged with a
standard language for modeling CP. This MiniZinc problem
has two parts- model and data which may be in separate files.
The assignments to parameters declared in the model are
contained in the data file. The model file is not attached to any
particular data file. Boolean, integers, and floats are the three
scalar types provided and sets and arrays are two compound
types provided. The MiniZinc is translated to FlatZinc in two
parts as flattening and the rest. Flattening is done in a number
of steps to reduce the model and data as much as possible.
The order of the steps is not fixed. After flattening, post
flattening steps are applied. Different MiniZinc to FlatZinc
converters are used. The main goal here was to define a
language which is not too big but expressive.

 Alan M. Frisch, M. Grum, C. Jefferson, B.M.
Hernandez, Ian Miguel [7] have discussed a new formal
language ESSENCE for specifying combinatorial problems
which provides a high level of abstraction. This language was
a result of attempt to design a formal language that enables
abstract problem. For this language no expertise in CP should
be needed, it is accessible to anyone with knowledge of
discrete mathematics as it is based on the notation and
concepts of discrete mathematics. It provides high level of
abstraction stating that the language should not force a
specification to provide unnecessary information. This
language provides an exceptionally rich set of constructs for
expressing quantification. It also supports complex, nested
types and also its result can be specified without modeling
them.

Adrian Petcu [8] has discussed in brief about efficient
optimization techniques that are essential to coordinate to
business companies and distributed solution processes are
desirable as they allow the participating actors to keep control
on their data and also offer privacy.

Many key issues are presented that are present in this domain
like the actors involved in the distributed decision processes
do not have the global knowledge and overview. The goal of
constraint optimization is to find the best assignment of values
to the variables so that utilities are maximized and cost is
minimized. A new technique based on dynamic programming
was developed for distributed optimization which was a utility
propagation mechanism and works on constraint problems.

It requires only a linear number of messages for finding the
optimal solution. These algorithms for distributed constraint
optimization have not been applied to large scale due to
complexity reason.

 Brahim Hnich, S.D. Prestwich, E. Selensky, B.M.
Smith[9] have developed models for constraint programming
for finding an optimal covering array. It is shown that the
compound variables that represent tuples of variables in the
original model, allow the constraints of the problem to be
represented more easily, propagating better. The optimality of
existing bounds is proved for finding the optimal solutions for
moderate size array. In covering test problems instances are
used with coverage strengths. Number of parameters here is
varied. It has shown that for moderate problem size one can
find provably optima solution using CP approach. One of the
advantages of CP is easy handling of side constraints i.e.
simply by adding them to the model.

 C. Bessiere, J. Quinqueton, G. Raymond [10] have
proposed an automated model to generate different viewpoints
for the problem we are to model. The main idea here is to
build a viewpoint enough to describe many different solutions
of problems also describes a solution of the target problem.
Historical data is with which it is started and historical data is
used as solutions to problems close to the target problems.
From this data candidate variables are extracted. So this can
be seen that these viewpoints are capable of describing the
historical solutions and also the solutions of our target
problem. The goal here is to build viewpoints which match
the given historical data. For this candidate variables are
determined according to the history. A set of potential
viewpoints are obtained out of which more relevant is selected
to build constraint models efficiently.

 P.E. Hladik. A.M. Deplanche, N. Jussien, H.
Cambazard [11] has presented an approach to solve hard real
time allocation problem i.e. to assign periodic tasks to
processors in context of fixed priority preemptive scheduling.
Bendors decomposition is also used as a way of learning when
the allocation yields a valid solution. The problem is
distributed in systems that belongs to a class. The authors

International Journal of Computer Applications Technology and Research
Volume 3– Issue 7, 395 - 399, 2014, ISSN: 2319–8656

www.ijcat.com 398

presents a decomposition based method which separates the
allocation problem from the scheduling one. The three classes
that the constraint allocation problem must respect are timing,
resource, and allocation constraints. For solving a master
problem using constraint programming, the problem needs to
be translated into CSP. The subproblem is considered as to
check whether a valid solution produced by master problem is
schedulable or not. If no data is sent then deadlines can
correspond to non-communicating tasks. The overall problem
is split into a master problem for allocation and resource
constraints and a subproblem for timing constraints. The
learning technique is used in an effort to combine the various
issues into a solution that satisfies all constraints.

 Julia L.Higle [12] has presented an introduction to
stochastic programming models. Stochastic linear
programming is resulted when some of the data elements in a
linear program are appropriately described using some
random variables. An example is illustrated giving the reason
why SP model is preferred and some essential features of a
stochastic program are identified. Stochastic programs are
difficult to solve and formulate. When the size of the problem
increases we can easily see that the solution difficulties
increase as well. Sensitivity analysis is done which provides a
sense of security and is important. It is used to study the
robustness of the solution to a linear programming model. It is
done for the accuracy of the data to check whether the
solution changes or not on changing the data. If the solution
remains same it is believed that the solution is appropriate and
vice versa. All the uncertainties should be included in the
model.

Philippe Refalo [13] has presented a new general purpose
strategy for constraint programming which is inspired from
integer programming technique. The importance of a variable
for the reduction of the search space is measured by the
impact. Designing the search strategy is difficult in integer
programming whereas the concept of domain reduction is
easier to understand and the use design of a search strategy is
easier in constraint programming. In the impact based search
strategy, by storing the observed importance of variables
impacts permit us to benefit from the search effort made up to
a certain node. With some standard strategies some instances
remain unsolved which are solved by this technique. Certain
principles are defined here for reducing the search effort.
When a value is assigned to a variable in constraint
programming, constraint propagation reduces the domains of
other variables defined.

Y.C Law, J.H.M. Lee [14] has introduced model induction
which is a systematic transformation of constraints in an
existing model to constraints in another viewpoint. Three
ways of combining redundant models are proposed using
model induction, another way is model channeling, and the
last is model intersection. It is also investigated how the
problem formulation and reformulation affect execution
efficiency of constraint solving algorithms. For the
formulation process the variables and the domain of the

variables is to be determined. The induced model is result of
the model induction. The three ways of combining the
redundant models are proposed so as to utilize the redundant
information in enhancing constraint propagation. Alternate
ways of generating models in a different viewpoint from
existing model are made.

 H.Y. Benson, D.F. Shanno, R.J. Vanderbei [15]
have analyzed the performance of several optimization codes
on large-scale nonlinear optimization problems. The size of
problem is defined to the number of variables and the number
off constraints. Some of the codes are tested and presented
available for solving large scale NLP’s. To identify the
features of these codes that are efficient is the goal.
Infeasibilities and unboundedness are detected in the problem
as early as possible. Performance of the algorithms running on
the same set of problems is compared to simple compute an
estimate of the probability that an algorithm performs. A
number of conclusions concerning specific algorithm details
exits if various algorithms are compared. Numerical result for
solving large scale nonlinear optimization problems is
presented. The performance of each solver is explained easily
and predicted based on the characteristics.

4. CONCLUSION
There are many challenges faced by mathematical engineering
approaches to find the optimal solution. The common
weakness to all of the approaches is the assumption that the
input data are perfectly accurate. Many benefits of using this
approach are discussed as visualization of results using
activities and resources. From an existing model another
model of a different viewpoint can be generated in a
systematic way. Experiments show that we can improve the
solving time by very small effort is spent in learning. But at
the same time it is too expensive. There are many challenges
as: these rely heavily on supervision of an expert and also
they are not capable of acquiring a description of the problem
class.

5. REFERENCES
[1] Willem-Jan van Hoeve, “Developing Constraint
Programming Applications with AIMMS,” in CP,2013.

[2] Arnaud Lallouet, Matthieu Lopez, Lionel Martin, Christel
Vrain, “On Learning Constraint Problems,” in ICTAI, 2010.

[3] Barry O’Sullivan, “Automated Modelling and Solving in
Constraint Programming,” in proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence(AAAI-
10), 2010.

[4] C. Bessi`ere, R. Coletta, and T. Petit, “Learning implied
global constraints,” in IJCAI, 2007, pp. 44–49.

[5] Steven J. Miller,” An Introduction to Linear
Programming,” in mathematics,2007.

International Journal of Computer Applications Technology and Research
Volume 3– Issue 7, 395 - 399, 2014, ISSN: 2319–8656

www.ijcat.com 399

[6] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J.
Duck, and G. Tack, “Minizinc: Towards a standard cp
modelling language,” in CP, 2007, pp. 529–543.

[7] A. M. Frisch, M. Grum, C. Jefferson, B. M. Hern´andez,
and I. Miguel,“The design of essence: A constraint language
for specifying combinatorial problems,” in IJCAI, M. M.
Veloso, Ed., 2007, pp. 80–87.

[8] Adrian Petcu,” Recent Advances in Dynamic, Distributed
Constraint Optimization,” in infoscience, 2006.

[9] Brahim Hnich, Steven D. Prestwich, Evgeny Selensky,
Barbara M. Smith, “Constraint Models for the Covering Test
Problem,” in CP, 2006, pp. 199-219.

[10] C. Bessiere, J. Quinqueton, and G. Raymond, “Mining
historical data to build constraint viewpoints,” in Proceedings
CP’06 Workshop on Modelling and Reformulation, 2006, pp.
1–16.

[11] Pierre-Emmanuel Hladik, Hadrien Cambazard, Anne-
Marie Deplanche, Narendra Jussien,” in ECRTS, 2005.

[12] Julia L. Higle,” Stochastic Programming: Optimization
When Uncertainty Matters,” in operations research informs-
New Orleans 2005, 2005.

[13] Philippe Refalo,” Impact-Based Search Strategies for
Constraint Programming,” in peasant IBS, 2004.

[14] Y.C. Law, J.H.M. Lee,” Model Induction: a New Source
of CSP Model Redundancy,” in AAAI, 2002.

[15] Hande Y. Benson, David F. Shanno, Robert J.
Vanderbei,” A Comparative Study of Large-Scale Nonlinear
Optimization Algorithms,” in NLP, 2002.

[16] Roman Bartak,” Constraint-Based Scheduling: An
Introduction for Newcomers,” in SOFSEM, 2002.

[17] R. Bart´ak. Constraint programming: In pursuit of the
holygrail. In Proc. of WDS99, 1999.

[18] J. Charnley, S. Colton, and I. Miguel, “Automatic
generation of implied constraints,” in ECAI, 2006, pp. 73–77.

[19] J.-F. Puget, “Constraint programming next challenge :
Simplicity of use,” in International Conference on Constraint
Programming, ser. LNCS, M. Wallace, Ed., vol. 3258.
Toronto, CA: Springer, 2004, pp. 5–8, invited paper.

[20] A. M. Frisch, M. Grum, C. Jefferson, B. M. Hern´andez,
and I. Miguel, “The design of essence: A constraint language
for specifying combinatorial problems,” in IJCAI, M. M.
Veloso, Ed., 2007, pp. 80–87.

