
International Journal of Computer Applications Technology and Research

Volume 4– Issue 3, 197 - 201, 2015, ISSN:- 2319–8656

www.ijcat.com 197

A Comparison between FPPSO and B&B Algorithm for

Solving Integer Programming Problems

Mahmoud Ismail

Department of Operations Research

Faculty of Computers and Informatics

Zagazig University

El-Zera Square, Zagazig, Sharqiyah

Egypt

Ibrahim El-Henawy

Department of Computer science

Faculty of Computers and Informatics,

Zagazig University

El-Zera Square, Zagazig, Sharqiyah

Egypt

Abstract: Branch and Bound technique (B&B) is commonly used for intelligent search in finding a set of integer solutions within a

space of interest. The corresponding binary tree structure provides a natural parallelism allowing concurrent evaluation of sub-

problems using parallel computing technology. Flower pollination Algorithm is a recently-developed method in the field of

computational intelligence. In this paper is presented an improved version of Flower pollination Meta-heuristic Algorithm, (FPPSO),

for solving integer programming problems. The proposed algorithm combines the standard flower pollination algorithm (FP) with the

particle swarm optimization (PSO) algorithm to improve the searching accuracy. Numerical results show that the FPPSO is able to

obtain the optimal results in comparison to traditional methods (branch and bound) and other harmony search algorithms. However,

the benefits of this proposed algorithm is in its ability to obtain the optimal solution within less computation, which save time in

comparison with the branch and bound algorithm.

Keywords: Branch and bound, flower pollination Algorithm; meta-heuristics; optimization; the particle swarm optimization; integer

programming.

1. INTRODUCTION
We ask that authors follow some simple guidelines. This

document is a template. An electronic copy can be

downloaded from the journal website. For questions on paper

guidelines, please contact the conference

publications committee as indicated on the conference

website. Information about final paper submission is

available from the conference website

The real world optimization problems are often very

challenging to solve, and many applications have to deal with

NP-hard problems [1]. To solve such problems, optimization

tools have to be used even though there is no guarantee that

the optimal solution can be obtained. In fact, for NP problems,

there are no efficient algorithms at all. As a result of this,

many problems have to be solved by trial and errors using

various optimization techniques [2]. In addition, new

algorithms have been developed to see if they can cope with

these challenging optimization problems. Among these new

algorithms, many algorithms such as particle swarm

optimization, cuckoo search and firefly algorithm, have

gained popularity due to their high efficiency. In this paper we

have used IBACH algorithm for solving integer programming

problems. Integer programming is NP-hard problems [3-10].

The name linear integer programming is referred to the class

of combinatorial constrained optimization problems with

integer variables, where the objective function is a linear

function and the constraints are linear inequalities. The Linear

Integer Programming (also known as LIP) optimization

problem can be stated in the following general form:

Max cx (1)

s.t. Ax ≤ b, (2)

xZn (3)

where the solution x ∈ Zn is a vector of n integer variables: x

= (x1, x2 , …, xn)T and the data are rational and are given by

the m×n matrix A, the 1×n matrix c, and the m×1 matrix b.

This formulation includes also equality constraints, because

each equality constraint can be represented by means of two

inequality constraints like those included in eq. (2).

Integer programming addresses the problem raised by non-

integer solutions in situations where integer values are

required. Indeed, some applications do allow a continuous

solution. For instance, if the objective is to find the amount of

money to be invested or the length of cables to be used, other

problems preclude it: the solution must be discrete [3].

Another example, if we are considering the production of jet

aircraft and x1 = 8.2 jet airliners, rounding off could affect the

profit or the cost by millions of dollars. In this case we need to

solve the problem so that an optimal integer solution is

guaranteed.

The possibility to obtain integer values is offered by integer

programming: as a pure integer linear programming, in which

all the variables must assume an integer value, or as a mixed-

integer linear programming which allows some variables to be

continuous, or a 0-1 integer model, all the decision variables

have integer values of zero or one[10].

A wide variety of real life problems in logistics, economics,

social sciences and politics can be formulated as linear integer

optimization problems. The combinatorial problems, like the

knapsack-capital budgeting problem, warehouse location

problem, travelling salesman problem, decreasing costs and

machinery selection problem, network and graph problems,

such as maximum flow problems, set covering problems,

matching problems, weighted matching problems, spanning

trees problems and many scheduling problems can also be

solved as linear integer optimization problems [11-14].

http://www.ijcat.com/
mk:@MSITStore:D:/Reality/management/Introduction%20to%20Management%20Science%20with%20Student%20CD,%209e/Prentice-Hall-Introduction.to.Management.Science.9th.Edition.Feb.2006.chm::/0131737961/gloss01__gdz.html#gloss01_256

International Journal of Computer Applications Technology and Research

Volume 4– Issue 3, 197 - 201, 2015, ISSN:- 2319–8656

www.ijcat.com 198

2. BRANCH AND BOUND
The branch and bound is the divide and conquer method. We

divide a large problem into a few smaller ones. (This is the

―branch‖ part). The conquering part is done by estimate how

good a solution we can get for each smaller problems (to do

this, we may have to divide the problem further, until we get a

problem that we can handle), that is the ―bound‖ part. The

branch and bound algorithm is able to be parallelized by

distributing computation of subproblems on multiple

computing nodes. Parallel branch and bound algorithms with

the master-worker algorithm, where a single master process

dispatches tasks to multiple worker processes, have been

proposed in many literatures [3]. In master-worker algorithm,

a single master process dispatches subproblems, which

correspond to leaf nodes on the search tree, to multiple worker

processes and receives the computed results from the worker

processes. The computed results contain the best upper bound

of the objective function, and subproblems that have

generated by branching and have not been pruned on a worker

process. Also, the parallel algorithm with the hierarchical

master-worker paradigm is proposed to improve performance

on large-scale computing environment.

Exact integer programming techniques such as cutting plane

techniques [15-17]. The branch and the bound both have high

computational cost, in large-scale problems [18-19]. The

branch and the bound algorithms have many advantages over

the algorithms that only use cutting planes. One example of

these advantages is that the algorithms can be removed early

as long as at least one integral solution has been found and an

attainable solution can be returned although it is not

necessarily optimal. Moreover, the solutions of the LP

relaxations can be used to provide a worst-case estimate of

how far from optimality the returned solution is. Finally, the

branch method and the bound method can be used to return

multiple optimal solutions.

Since integer linear programming is NP-complete, for that

reason many problems are intractable. So instead of the

integer linear programming, the heuristic methods must be

used. For example, Swarm intelligence metaheuristics,

amongst which an ant colony optimization, artificial bee

colony optimization particle swarm optimization [20-24].Also

Evolutionary algorithms, differential evolution and tabu

search were successfully applied into solving integer

programming problems [25-27]. Heuristics typically have

polynomial computational complexity, but they do not

guarantee that the optimal solution will be captured. In order

to solve integer programming problems, most of the heuristics

truncate or round the real valued solutions to the nearest

integer values. In this paper, an improved version of flower

pollination algorithm is applied to integer programming

problems and the performance was compared with other

harmony search algorithms.

This paper is organized as follows: after introduction, the

original branch and bound algorithm is introduced in section

2. The flower pollination algorithm is briefly introduced in

section 3. Section 4 introduces the particle swarm

optimization algorithm. Section 5 introduces the meaning of

chaos. While the results are discussed in section 6. Finally,

conclusions are presented in section 7.

3. FLOWER POLLINATION

ALGORITHM
Flower Pollination Algorithm (FPA) was founded by Yang in

the year 2012. Inspired by the flow pollination process of

flowering plants are the following rules [28]:

Rule 1: Biotic and cross-pollination can be considered as a

process of global pollination process, and pollen-carrying

pollinators move in a way that obeys Le'vy flights.

Rule 2: For local pollination, a biotic and self-pollination are

used.

Rule 3: Pollinators such as insects can develop flower

constancy, which is equivalent to a reproduction probability

that is proportional to the similarity of two flowers involved.

Rule 4: The interaction or switching of local pollination and

global pollination can be controlled by a switch probability

p[0,1], with a slight bias toward local pollination.

In order to formulate updating formulas, we have to convert

the aforementioned rules into updating equations. For

example, in the global pollination step, flower pollen gametes

are carried by pollinators such as insects, and pollen can travel

over a long distance because insects can often fly and move in

a much longer range [56].Therefore, Rule 1 and flower

constancy can be represented mathematically as:

))((1 BxLxx t

i

t

i

t

i  
 (1)

Where

t

ix
is the pollen i or solution vector xi at iteration t,

and B is the current best solution found among all solutions at

the current generation/iteration. Here γ is a scaling factor to

control the step size. In addition, L(λ) is the parameter that

corresponds to the strength of the pollination, which

essentially is also the step size. Since insects may move over a

long distance with various distance steps, we can use a Le'vy

flight to imitate this characteristic efficiently. That is, we draw

L > 0 from a Levy distribution:

)0(,
1)2/sin()(

~ 01





SS
S

L




 (2)

Here, Γ(λ) is the standard gamma function, and this

distribution is valid for large steps s > 0.

Then, to model the local pollination, both Rule 2 and Rule 3

can be represented as

)(1 t

k

t

j

t

i

t

i xxUxx 

(3)

Where

t

jx
and

t

kx
are pollen from different flowers of the

same plant species. This essentially imitates the flower

constancy in a limited neighborhood. Mathematically, if

t

jx

and

t

kx
comes from the same species or selected from the

same population, this equivalently becomes a local random

walk if we draw U from a uniform distribution in [0,

1].Though Flower pollination activities can occur at all scales,

both local and global, adjacent flower patches or flowers in

the not-so-far-away neighborhood are more likely to be

pollinated by local flower pollen than those faraway. In order

to imitate this, we can effectively use the switch probability

like in Rule 4 or the proximity probability p to switch between

common global pollination to intensive local pollination. To

begin with, we can use a naive value of p = 0.5as an initially

value. A preliminary parametric showed that p = 0.8 might

work better for most applications [28].

http://www.ijcat.com/
http://en.wikipedia.org/wiki/NP-complete

International Journal of Computer Applications Technology and Research

Volume 4– Issue 3, 197 - 201, 2015, ISSN:- 2319–8656

www.ijcat.com 199

The basic steps of FP can be summarized as the pseudo-code

shown in Figure 1.

Flower pollination algorithm

Define Objective function f (x), x = (x1, x2, ..., xd)

Initialize a population of n flowers/pollen gametes with

random solutions

Find the best solution Bin the initial population

Define a switch probability p ∈ [0, 1]

Define a stopping criterion (either a fixed number of

generations/iterations or accuracy)

while (t <MaxGeneration)

for i = 1 : n (all n flowers in the population)

if rand <p,

Draw a (d-dimensional) step vector L which obeys a L´evy

distribution

Global pollination via)(1 t

i

t

i

t

i xBLxx 

else

Draw U from a uniform distribution in [0,1]

Do local pollination via)(1 t

k

t

j

t

i

t

i xxUxx 

end if

Evaluate new solutions

If new solutions are better, update them in the population

end for

Find the current best solution B

end while

Output the best solution found

Fig. 1 Pseudo code of the Flower pollination algorithm

4. PARTICLE SWARM OPTIMIZATION
Particle swarm optimization (PSO) was developed by

Kennedy and Eberhartin 1995 based on the swarm behavior

such as fish and bird schooling in nature [29]. Since then,

PSO has generated much wider interests and forms an

exciting, ever expanding research subject called swarm

intelligence. This algorithm searches the space of an objective

function by adjusting the trajectories of individual agents,

called particles, as the piecewise paths formed by positional

vectors in a quasi stochastic manner. The movement of a

swarming particle consists of two major components: a

stochastic component and a deterministic component. Each

particle is attracted toward the position of the current global

best g and its own best location xi* in history, while at the

same time it has a tendency to move randomly. Let xi and vi

be the position vector and velocity of particle i, respectively.

The new velocity vector is determined by the following

formula:

)()(*

2211

1 t

ix

t

i

t

v

t

i xxrcxgrcvv 

 (4)

Wherer1 and r2are two random vectors and each entry takes

the values between 0and 1. The parameters c1and c2are the

learning parameters or acceleration constants, which can

typically be taken as, say, c1≈c2≈ 2.The initial locations of all

particles should be distributed relatively uniformly so that

they can sample over most regions, which is especially

important for multimodal problems. The initial velocity of a

particle can be taken as zero, i.e. vit=0 =0. The new positions

can then be updated by:

11   t

i

t

i

t

i vxx
 (5)

Although vi can be any value, it is usually bounded in some

range [0,vmax].

5. CHAOS
Generating random sequences with longer periods and good

consistency is very important for easily simulating complex

phenomena, sampling, numerical analysis, decision making

and especially in heuristic optimization [30]. Its quality

determines the reduction of storage and computation time to

achieve a desired accuracy [31]. Chaos is a deterministic,

random-like process found in a nonlinear, dynamical system,

which is non-period, non-converging and non-bounded.

Moreover, it depends on its initial condition and parameters

[32-34]. Applications of chaos has several disciplines

including operations research, physics, engineering,

economics, biology, philosophy and computer science [35-

37].

Recently chaos has been extended to various optimization

areas because it can more easily escape from local minima

and improve global convergence in comparison with other

stochastic optimization algorithms [34-38]. Using chaotic

sequences in flower pollination Algorithm can be helpful to

improve the reliability of the global optimality, and they also

enhance the quality of the results.

5.1 Chaotic Maps
At random-based optimization algorithms, the methods using

chaotic variables instead of random variables are called

chaotic optimization algorithms (COA) [34]. In these

algorithms, due to the non-repetition and ergodicity of chaos,

it can carry out overall searches at higher speeds than

stochastic searches that depend on probabilities [43-48]. To

resolve this issue, herein one-dimensional and non-invertible

maps are utilized to generate chaotic sets. We will illustrate

some of well-known one-dimensional maps as:

5.1.1 The Logistic map
The Logistic map is defined by:

 () () (6)

5.1.2 The Sine map
The Sine map is written as the following equation:

 () () (7)

5.1.3 The iterative chaotic map
The iterative chaotic map with infinite collapses is described

as:

 (

) ∈ () (8)

5.1.4 The Circle map
The Circle map is expressed as:

 (

) () (9)

5.1.5 The Chebyshev map
The family of Chebyshev map is written as the following

equation:

 (
 ()) ∈ () (10)

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 3, 197 - 201, 2015, ISSN:- 2319–8656

www.ijcat.com 200

5.1.6 The Sinusoidal map
Sinusoidal map can be represented by

 () (11)

5.1.7 The Gauss map
The Gauss map is represented by:

 {

 (12)

5.1.8 The Sinus map
Sinus map is formulated as follows:

 ()
 () (13)

5.1.9 The Dyadic map
Dyadic map Also known as the dyadic map bit shift map, 2x

mod 1 map, Bernoulli map, doubling map or saw tooth map.

Dyadic map can be formulated by a mod function:

 (14)

5.1.10 The Singer map
Singer map can be written as:

 (

) (15)

 between 0.9 and 1.08

5.1.11 The Tent map
Tent map can be defined by the following equation:

 {

 ()
 (16)

6. NUMERICAL RESULTS
Several examples have been done to verify the weight of the

proposed algorithm. The initial parameters setting of the

algorithms is as follows: HMS=50 and itermax=1000, HMCR

= 0.9; PARmax = 1; PARmin =0.1; bwmax = 1; bwmin =

0.01. The results of FPPSO algorithm are conducted from 50

independent runs for each problem and measured according to

the best values in these runs.The selected chaotic map for all

examples is the Sinusoidal map, whose equation is shown

below:
 () (16)

Where n is the iteration number.

Table 1. Optimal solution of selected problems

Exact Method The Best Solution

No.of

Variables

Optimal

Solution
Optimal values BB FPPSO

2 55 Xi=(4,3) 55 55

3 26 Xi=(2,1,6) 22 26

5 9 Xi=(1,1,0,0,0) 7 9

10 9
Xi=(0,2,0,2,3,1,0,

0,2,3)
7 9

20 16

Xi=(0,0,0,0,0,0,0,

0,0,1,4,0,4,3,0,2,4

,0,3,0)
12 16

30 446

Xi=(0,0,0,0,0,0,0,

0,0,16,20,4,4,0,3,

0,0,0,24,3,0,0,0,0,

0,4,0,1,0,8)

401 446

Table 1 shows the results of FPPSO algorithm are privileged

compared with the results of Branch and bound (B&B). In

comparison with exact values we find that the results of

FPPSO algorithm are very close to the exact values of

selected problems under the study. If a large number of

variables are to be found, then it is hard to go past the

classical methods. More usually, though, users will choose to

use the proposed algorithm, to save their own time and to gain

reliability. for example when we solved test problem number

6 by proposed algorithm it took time 7 seconds ,but when we

solved it by branch and bound(exact method) it took time 396

seconds .

The reason for getting better results than the other algorithm

considered is that the search power of FP algorithm. Adding

to this, using PSO algorithm improves the performance of the

algorithm.

7. CONCLUSIONS
This paper has introduced an improved flower pollination

Algorithm by blending with practical swarm optimization

algorithm for solving integer programming problems. Several

examples have been used to prove the effectiveness of

FPPSO. FPPSO algorithm managed to solve a large scale of

problems that traditional method could not solve due to

exponential growth in time and space complexities. The

solution procedure will not face the same time waste in going

through non-converging iterations as traditional methods do.

FPPSO algorithm is superior to B&B in terms of both

efficiency and success rate. This implies that FPPSO is

potentially more powerful in solving NP-hard problems.

who have contributed towards development of the template.

8. REFERENCES
[1] L. A. Wolsey, Integer programming, IIE Transactions,

vol. 32, pp. 2-58, 2000.

[2] G. B. Dantzig, Linear programming and extensions:

Princeton university press, 1998.

[3] G. L. Nemhauser and L. A. Wolsey, Integer and

combinatorial optimization vol. 18: Wiley New York,

1988.

[4] E. Beale, "Integer programming," in Computational

Mathematical Programming, ed: Springer, 1985, pp. 1-

24.

[5] C. H. Papadimitriou and K. Steiglitz, Combinatorial

optimization: algorithms and complexity: Courier Dover

Publications, 1998.

[6] H. Williams, "Logic and Integer Programming,

International Series in Operations Research &

Management Science," ed: Springer, 2009.

[7] A. Schrijver, Theory of linear and integer programming:

Wiley. com, 1998.

[8] D. Bertsimas and R. Weismantel, Optimization over

integers vol. 13: Dynamic Ideas Belmont, 2005.

[9] J. K. Karlof, Integer programming: theory and practice:

CRC Press, 2005.

[10] M. Jünger, T. Liebling, D. Naddef, G. Nemhauser, W.

Pulleyblank, G. Reinelt, et al., 50 Years of Integer

Programming 1958–2008: Springer, Berlin, 2010.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 3, 197 - 201, 2015, ISSN:- 2319–8656

www.ijcat.com 201

[11] D.-S. Chen, R. G. Batson, and Y. Dang, Applied integer

programming: modeling and solution: Wiley. com, 2011.

[12] K. L. Hoffman and M. Padberg, "Solving airline crew

scheduling problems by branch-and-cut," Management

Science, vol. 39, pp. 657-682, 1993.

[13] J. D. Little, K. G. Murty, D. W. Sweeney, and C. Karel,

"An algorithm for the traveling salesman problem,"

Operations research, vol. 11, pp. 972-989, 1963.

[14] M. Grotschel and L. Lovász, "Combinatorial

optimization," Handbook of combinatorics, vol. 2, pp.

1541-1597, 1995.

[15] R. E. Gomory, "Outline of an algorithm for integer

solutions to linear programs," Bulletin of the American

Mathematical Society, vol. 64, pp. 275-278, 1958.

[16] R. E. Gomory, "An algorithm for integer solutions to

linear programs," Recent advances in mathematical

programming, vol. 64, pp. 260-302, 1963.

[17] R. E. Gomory, "Early integer programming," Operations

Research, pp. 78-81, 2002.

[18] J. Tomlin, "Branch and bound methods for integer and

non-convex programming," Integer and Nonlinear

Programming, American Elsevier Publishing Company,

New York, pp. 437-450, 1970.

[19] S. Rouillon, G. Desaulniers, and F. Soumis, "An

extended branch-and-bound method for locomotive

assignment," Transportation Research Part B:

Methodological, vol. 40, pp. 404-423, 2006.

[20] M. Tuba, "Swarm intelligence algorithms parameter

tuning," in Proceedings of the 6th WSEAS international

conference on Computer Engineering and Applications,

and Proceedings of the 2012 American conference on

Applied Mathematics, 2012, pp. 389-394.

[21] R. Jovanovic and M. Tuba, "An ant colony optimization

algorithm with improved pheromone correction strategy

for the minimum weight vertex cover problem," Applied

Soft Computing, vol. 11, pp. 5360-5366, 2011.

[22] R. Jovanovic and M. Tuba, "Ant colony optimization

algorithm with pheromone correction strategy for the

minimum connected dominating set problem," Computer

Science and Information Systems, vol. 10, pp. 133-149,

2013.

[23] B. Akay and D. Karaboga, "Solving integer

programming problems by using artificial bee colony

algorithm," in AI* IA 2009: Emergent Perspectives in

Artificial Intelligence, ed: Springer, 2009, pp. 355-364.

[24] M. G. Omran, A. Engelbrecht, and A. Salman,

"Barebones particle swarm for integer programming

problems," in Swarm Intelligence Symposium, 2007. SIS

2007. IEEE, 2007, pp. 170-175.

[25] G. Rudolph, "An evolutionary algorithm for integer

programming," in Parallel Problem Solving from

Nature—PPSN III, ed: Springer, 1994, pp. 139-148.

[26] M. G. Omran and A. P. Engelbrecht, "Differential

evolution for integer programming problems," in

Evolutionary Computation, 2007. CEC 2007. IEEE

Congress on, 2007, pp. 2237-2242.

[27] F. Glover, "Tabu search—part II," ORSA Journal on

computing, vol. 2, pp. 4-32, 1990.

[28] X-S. Yang, Flower pollination algorithm for global

optimization, Unconventional Computation, lecture

Notes in Computer Science, Vol. 7445, pp. 240-

249,2012.

[29] J. Kennedy and R. Eberhart, Particle swarm

optimization, in Proceedings of IEEE International

Conference on Neural Network, pp. 1942–1948,

December 1995.

[30] O. Abdel-Raouf, , M.Abdel-Baset, and I. El-Henawy.

"An Improved Chaotic Bat Algorithm for Solving Integer

Programming Problems." International Journal of

Modern Education and Computer Science (IJMECS) 6.8

 ‏.18 :(2014)

[31] O. Abdel-Raouf, , M. Abdel-Baset, and I. El-henawy. "A

New Hybrid Flower Pollination Algorithm for Solving

Constrained Global Optimization Problems."

International Journal of Applied 4.2 (2014): 1-13.‏

[32] O. Raouf, I. El-henawy, and M. Abdel-Baset. "A novel

hybrid flower pollination algorithm with chaotic

harmony search for solving sudoku puzzles."

International Journal of Modern Education and

Computer Science 3 (2014): 38-44.

[33] O. Abdel-Raouf, I. El-henawy and M. Abdel-Baset

"chaotic Harmony Search Algorithm with Different

Chaotic Maps for Solving Assignment Problems

"International Journal of Computational Engineering &

Management, Vol. 17, pp. 10-15 ,2014.

[34] O. Abdel-Raouf, I. El-henawy and M. Abdel-Baset.

"Chaotic Firefly Algorithm for Solving Definite

Integral", IJITCS, vol.6, no.6, pp.19-24, 2014.

[35] O. Abdel-Raouf, I. El-henawy and M. Abdel-Baset

"Improved Harmony Search with Chaos for Solving

Linear Assignment Problems", IJISA, vol.6, no.5, pp.55

61, 2014.

[36] O. Abdel-Raouf, , M. Abdel-Baset, and I. El-henawy.

"An Improved Flower Pollination Algorithm with

Chaos." 2014.‏

[37] I. El-henawy, , O. Abdel-Raouf, and M. Abdelbaset.

"Improved harmony search algorithm with chaos for

solving definite integral." International Journal of

Operational Research 21.2 (2014): 252-261.‏

http://www.ijcat.com/

