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Abstract: Branch and Bound technique (B&B) is commonly used for intelligent search in finding a set of integer solutions within a 

space of interest. The corresponding binary tree structure provides a natural parallelism allowing concurrent evaluation of sub-

problems using parallel computing technology. Flower pollination Algorithm is a recently-developed method in the field of 

computational intelligence. In this paper is presented an improved version of Flower pollination Meta-heuristic Algorithm, (FPPSO), 

for solving integer programming problems. The proposed algorithm combines the standard flower pollination algorithm (FP) with the 

particle swarm optimization (PSO) algorithm to improve the searching accuracy. Numerical results show that the FPPSO is able to 

obtain the optimal results in comparison to traditional methods (branch and bound) and other harmony search algorithms. However, 

the benefits of this proposed algorithm is in its ability to obtain the optimal solution within less computation, which save time in 

comparison with the branch and bound algorithm. 
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1. INTRODUCTION 
We ask that authors follow some simple guidelines. This 

document is a template.  An electronic copy can be 

downloaded from the journal website.  For questions on paper 

guidelines, please contact the conference 

publications committee as indicated on the conference 

website.  Information about final paper submission is 

available from the conference website 

The real world optimization problems are often very 

challenging to solve, and many applications have to deal with 

NP-hard problems [1]. To solve such problems, optimization 

tools have to be used even though there is no guarantee that 

the optimal solution can be obtained. In fact, for NP problems, 

there are no efficient algorithms at all. As a result of this, 

many problems have to be solved by trial and errors using 

various optimization techniques [2]. In addition, new 

algorithms have been developed to see if they can cope with 

these challenging optimization problems. Among these new 

algorithms, many algorithms such as particle swarm 

optimization, cuckoo search and firefly algorithm, have 

gained popularity due to their high efficiency. In this paper we 

have used IBACH algorithm for solving integer programming 

problems. Integer programming is NP-hard problems [3-10]. 

The name linear integer programming is referred to the class 

of combinatorial constrained optimization problems with 

integer variables, where the objective function is a linear 

function and the constraints are linear inequalities. The Linear 

Integer Programming (also known as LIP) optimization 

problem can be stated in the following general form:  

Max cx                         (1) 

s.t. Ax ≤  b,                  (2) 

xZn                            (3) 

 

where the solution x ∈  Zn is a vector of n integer variables: x 

= (x1, x2 , …, xn)T and the data are rational and are given by 

the m×n matrix A, the 1×n matrix c, and the m×1 matrix b. 

This formulation includes also equality constraints, because 

each equality constraint can be represented by means of two 

inequality constraints like those included in eq. (2). 

 

Integer programming addresses the problem raised by non-

integer solutions in situations where integer values are 

required. Indeed, some applications do allow a continuous 

solution. For instance, if the objective is to find the amount of 

money to be invested or the length of cables to be used, other 

problems preclude it: the solution must be discrete [3]. 

Another example, if we are considering the production of jet 

aircraft and x1 = 8.2 jet airliners, rounding off could affect the 

profit or the cost by millions of dollars. In this case we need to 

solve the problem so that an optimal integer solution is 

guaranteed.  

 

The possibility to obtain integer values is offered by integer 

programming: as a pure integer linear programming, in which 

all the variables must assume an integer value, or as a mixed-

integer linear programming which allows some variables to be 

continuous, or a 0-1 integer model, all the decision variables 

have integer values of zero or one[10]. 

 

A wide variety of real life problems in logistics, economics, 

social sciences and politics can be formulated as linear integer 

optimization problems. The combinatorial problems, like the 

knapsack-capital budgeting problem, warehouse location 

problem, travelling salesman problem, decreasing costs and 

machinery selection problem, network and graph problems, 

such as maximum flow problems, set covering problems, 

matching problems, weighted matching problems, spanning 

trees problems and many scheduling problems can also be 

solved as linear integer optimization problems [11-14].  
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2. BRANCH AND BOUND  
The branch and bound is the divide and conquer method. We 

divide a large problem into a few smaller ones. (This is the 

―branch‖ part). The conquering part is done by estimate how 

good a solution we can get for each smaller problems (to do 

this, we may have to divide the problem further, until we get a 

problem that we can handle), that is the ―bound‖ part. The 

branch and bound algorithm is able to be parallelized by 

distributing computation of subproblems on multiple 

computing nodes. Parallel branch and bound algorithms with 

the master-worker algorithm, where a single master process 

dispatches tasks to multiple worker processes, have been 

proposed in many literatures [3]. In master-worker algorithm, 

a single master process dispatches subproblems, which 

correspond to leaf nodes on the search tree, to multiple worker 

processes and receives the computed results from the worker 

processes. The computed results contain the best upper bound 

of the objective function, and subproblems that have 

generated by branching and have not been pruned on a worker 

process. Also, the parallel algorithm with the hierarchical 

master-worker paradigm is proposed to improve performance 

on large-scale computing environment.   

Exact integer programming techniques such as cutting plane 

techniques [15-17]. The branch and the bound both have high 

computational cost, in large-scale problems [18-19]. The 

branch and the bound algorithms have many advantages over 

the algorithms that only use cutting planes. One example of 

these advantages is that the algorithms can be removed early 

as long as at least one integral solution has been found and an 

attainable solution can be returned although it is not 

necessarily optimal. Moreover, the solutions of the LP 

relaxations can be used to provide a worst-case estimate of 

how far from optimality the returned solution is. Finally, the 

branch method and the bound method can be used to return 

multiple optimal solutions. 

Since integer linear programming is NP-complete, for that 

reason many problems are intractable. So instead of the 

integer linear programming, the heuristic methods must be 

used. For example, Swarm intelligence metaheuristics, 

amongst which an ant colony optimization, artificial bee 

colony optimization particle swarm optimization [20-24].Also 

Evolutionary algorithms, differential evolution and tabu 

search were successfully applied into solving integer 

programming problems [25-27]. Heuristics typically have 

polynomial computational complexity, but they do not 

guarantee that the optimal solution will be captured. In order 

to solve integer programming problems, most of the heuristics 

truncate or round the real valued solutions to the nearest 

integer values. In this paper, an improved version of flower 

pollination algorithm is applied to integer programming 

problems and the performance was compared with other 

harmony search algorithms. 

 

This paper is organized as follows: after introduction, the 

original branch and bound algorithm is introduced in section 

2. The flower pollination algorithm is briefly introduced in 

section 3. Section 4 introduces the particle swarm 

optimization algorithm. Section 5 introduces the meaning of 

chaos.  While the results are discussed in section 6. Finally, 

conclusions are presented in section 7. 

3. FLOWER POLLINATION 

ALGORITHM 
Flower Pollination Algorithm (FPA) was founded by Yang in 

the year 2012. Inspired by the flow pollination process of 

flowering plants are the following rules [28]: 

 

Rule 1: Biotic and cross-pollination can be considered as a 

process of global pollination process, and pollen-carrying 

pollinators move in a way that obeys Le'vy flights.  

Rule 2: For local pollination, a biotic and self-pollination are 

used. 

Rule 3: Pollinators such as insects can develop flower 

constancy, which is equivalent to a reproduction probability 

that is proportional to the similarity of two flowers involved. 

Rule 4: The interaction or switching of local pollination and 

global pollination can be controlled by a switch probability 

p[0,1], with a slight bias toward local pollination. 

 

In order to formulate updating formulas, we have to convert 

the aforementioned rules into updating equations. For 

example, in the global pollination step, flower pollen gametes 

are carried by pollinators such as insects, and pollen can travel 

over a long distance because insects can often fly and move in 

a much longer range [56].Therefore, Rule 1 and flower 

constancy can be represented mathematically as: 

))((1 BxLxx t

i

t

i

t

i  
 (1) 

Where 

t

ix
is the pollen i or solution vector xi at iteration t, 

and B is the current best solution found among all solutions at 

the current generation/iteration. Here γ is a scaling factor to 

control the step size. In addition, L(λ) is the parameter that 

corresponds to the strength of the pollination, which 

essentially is also the step size. Since insects may move over a 

long distance with various distance steps, we can use a Le'vy 

flight to imitate this characteristic efficiently. That is, we draw 

L > 0 from a Levy distribution: 
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Here, Γ(λ) is the standard gamma function, and this 

distribution is valid for large steps s > 0. 

Then, to model the local pollination, both Rule 2 and Rule 3 

can be represented as 

)(1 t
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(3) 

Where 

t

jx
and 

t

kx
are pollen from different flowers of the 

same plant species. This essentially imitates the flower 

constancy in a limited neighborhood. Mathematically, if 

t

jx

and 

t

kx
comes from the same species or selected from the 

same population, this equivalently becomes a local random 

walk if we draw U from a uniform distribution in [0, 

1].Though Flower pollination activities can occur at all scales, 

both local and global, adjacent flower patches or flowers in 

the not-so-far-away neighborhood are more likely to be 

pollinated by local flower pollen than those faraway. In order 

to imitate this, we can effectively use the switch probability 

like in Rule 4 or the proximity probability p to switch between 

common global pollination to intensive local pollination. To 

begin with, we can use a naive value of p = 0.5as an initially 

value. A preliminary parametric showed that p = 0.8 might 

work better for most applications [28]. 
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The basic steps of FP can be summarized as the pseudo-code 

shown in Figure 1. 

 

Flower pollination algorithm 

Define Objective function f (x), x = (x1, x2, ..., xd) 

Initialize a population of n flowers/pollen gametes with 

random solutions 

Find the best solution Bin the initial population 

Define a switch probability p ∈  [0, 1] 

Define a stopping criterion (either a fixed number of 

generations/iterations or accuracy) 

while (t <MaxGeneration) 

for i = 1 : n (all n flowers in the population) 

if rand <p, 

Draw a (d-dimensional) step vector L which obeys a L´evy 

distribution 

Global pollination via )(1 t

i

t

i

t

i xBLxx   

else 

Draw U from a uniform distribution in [0,1] 

Do local pollination via )(1 t

k

t

j

t

i

t

i xxUxx   

end if 

Evaluate new solutions 

If new solutions are better, update them in the population 

end for 

Find the current best solution B 

end while 

Output the best solution found 

Fig. 1 Pseudo code of the Flower pollination algorithm 

4. PARTICLE SWARM OPTIMIZATION 
Particle swarm optimization (PSO) was developed by 

Kennedy and Eberhartin 1995 based on the swarm behavior 

such as fish and bird schooling in nature [29]. Since then, 

PSO has generated much wider interests and forms an 

exciting, ever expanding research subject called swarm 

intelligence. This algorithm searches the space of an objective 

function by adjusting the trajectories of individual agents, 

called particles, as the piecewise paths formed by positional 

vectors in a quasi stochastic manner. The movement of a 

swarming particle consists of two major components: a 

stochastic component and a deterministic component. Each 

particle is attracted toward the position of the current global 

best g and its own best location xi* in history, while at the 

same time it has a tendency to move randomly. Let xi and vi 

be the position vector and velocity of particle i, respectively. 

The new velocity vector is determined by the following 

formula: 

)()( *

2211

1 t

ix

t

i

t

v

t

i xxrcxgrcvv 

    (4) 

Wherer1 and r2are two random vectors and each entry takes 

the values between 0and 1. The parameters c1and c2are the 

learning parameters or acceleration constants, which can 

typically be taken as, say, c1≈c2≈ 2.The initial locations of all 

particles should be distributed relatively uniformly so that 

they can sample over most regions, which is especially 

important for multimodal problems. The initial velocity of a 

particle can be taken as zero, i.e. vit=0 =0. The new positions 

can then be updated by: 

11   t

i

t

i

t

i vxx
        (5) 

Although vi can be any value, it is usually bounded in some 

range [0,vmax]. 

5. CHAOS 
Generating random sequences with longer periods and good 

consistency is very important for easily simulating complex 

phenomena, sampling, numerical analysis, decision making 

and especially in heuristic optimization [30]. Its quality 

determines the reduction of storage and computation time to 

achieve a desired accuracy [31]. Chaos is a deterministic, 

random-like process found in a nonlinear, dynamical system, 

which is non-period, non-converging and non-bounded. 

Moreover, it depends on its initial condition and parameters 

[32-34]. Applications of chaos has several disciplines 

including operations research, physics, engineering, 

economics, biology, philosophy and computer science [35-

37]. 

Recently chaos has been extended to various optimization 

areas because it can more easily escape from local minima 

and improve global convergence in comparison with other 

stochastic optimization algorithms [34-38]. Using chaotic 

sequences in flower pollination Algorithm can be helpful to 

improve the reliability of the global optimality, and they also 

enhance the quality of the results. 

5.1 Chaotic Maps 
At random-based optimization algorithms, the methods using 

chaotic variables instead of random variables are called 

chaotic optimization algorithms (COA) [34]. In these 

algorithms, due to the non-repetition and ergodicity of chaos, 

it can carry out overall searches at higher speeds than 

stochastic searches that depend on probabilities [43-48]. To 

resolve this issue, herein one-dimensional and non-invertible 

maps are utilized to generate chaotic sets. We will illustrate 

some of well-known one-dimensional maps as: 

5.1.1 The Logistic map 
The Logistic map is defined by: 

                 (     )  (   )             (6) 

5.1.2 The Sine map 
The Sine map is written as the following equation: 

     
 

 
   (   )    (   )               (7) 

5.1.3 The iterative chaotic map 
The iterative chaotic map with infinite collapses is described 

as: 

            (
  

  
)   ∈ (   )                               (8) 

5.1.4 The Circle map 
The Circle map is expressed as: 

          (
 

  
)    (    )            (9) 

5.1.5 The Chebyshev map 
The family of Chebyshev map is written as the following 

equation: 

        (    
  (  ))    ∈ (    )          (10) 
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5.1.6 The Sinusoidal map 
Sinusoidal map can be represented by 

        
     (   )                                               (11) 

5.1.7 The Gauss map 
The Gauss map is represented by: 

      {
                           
 

  
                 

                          (12) 

5.1.8 The Sinus map 
Sinus map is formulated as follows: 

        (  )
     (   )                                (13) 

5.1.9 The Dyadic map 
Dyadic map Also known as the dyadic map bit shift map, 2x 

mod 1 map, Bernoulli map, doubling map or saw tooth map. 

Dyadic map can be formulated by a mod function: 

                                                            (14) 

5.1.10 The Singer map 
Singer map can be written as: 

      (              
         

  

      
 )                                                                   (15) 

  between 0.9 and 1.08 

5.1.11 The Tent map 
Tent map can be defined by the following equation: 

     {
                              

 (    )               
                  (16) 

 

6. NUMERICAL RESULTS 
Several examples have been done to verify the weight of the 

proposed algorithm. The initial parameters setting of the 

algorithms is as follows: HMS=50 and itermax=1000, HMCR 

= 0.9; PARmax = 1; PARmin =0.1; bwmax = 1; bwmin = 

0.01. The results of FPPSO algorithm are conducted from 50 

independent runs for each problem and measured according to 

the best values in these runs.The selected chaotic map for all 

examples is the Sinusoidal map, whose equation is shown 

below:         
     (   )            (16) 

Where n is the iteration number. 

Table 1. Optimal solution of selected problems 

Exact Method The Best Solution 

No.of 

Variables 

Optimal 

Solution 
Optimal values BB FPPSO 

2 55 Xi=(4,3) 55 55 

3 26 Xi=(2,1,6) 22 26 

5 9 Xi=(1,1,0,0,0) 7 9 

10 9 
Xi=(0,2,0,2,3,1,0,

0,2,3) 
7 9 

20 16 

Xi=(0,0,0,0,0,0,0,

0,0,1,4,0,4,3,0,2,4

,0,3,0) 
12 16 

30 446 

Xi=(0,0,0,0,0,0,0,

0,0,16,20,4,4,0,3,

0,0,0,24,3,0,0,0,0,

0,4,0,1,0,8) 

401 446 

 
Table 1 shows the results of FPPSO algorithm are privileged 

compared with the results of Branch and bound (B&B). In 

comparison with exact values we find that the results of 

FPPSO algorithm are very close to the exact values of 

selected problems under the study. If a large number of 

variables are to be found, then it is hard to go past the 

classical methods. More usually, though, users will choose to 

use the proposed algorithm, to save their own time and to gain 

reliability. for example when we solved test problem number 

6 by proposed algorithm it took time 7 seconds ,but when we 

solved it by branch and bound(exact method) it took time 396 

seconds . 

The reason for getting better results than the other algorithm 

considered is that the search power of FP algorithm. Adding 

to this, using PSO algorithm improves the performance of the 

algorithm. 

7. CONCLUSIONS 
This paper has introduced an improved flower pollination 

Algorithm by blending with practical swarm optimization 

algorithm for solving integer programming problems. Several 

examples have been used to prove the effectiveness of 

FPPSO. FPPSO algorithm managed to solve a large scale of 

problems that traditional method could not solve due to 

exponential growth in time and space complexities. The 

solution procedure will not face the same time waste in going 

through non-converging iterations as traditional methods do. 

FPPSO algorithm is superior to B&B in terms of both 

efficiency and success rate. This implies that FPPSO is 

potentially more powerful in solving NP-hard problems. 

who have contributed towards development of the template. 
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